izpis_h1_title_alt

Algoritmi za iskanje Nashevega ravnovesja v bimatričnih igrah
ID Leonardis, Tomaž Jonatan (Author), ID Zalar, Aljaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,13 MB)
MD5: 014143F9295F49153A32ABAE6A62AD49

Abstract
Iskanje Nashevega ravnovesja v bimatrični igri je problem iskanja strateškega profila igralcev igre, kjer nobeden izmed njih svojega dobička ne more povečati s samostojno spremembo stran od obstoječega strateškega profila. Problem je računsko zahteven in pripada razredu PPAD-polnih problemov. Skozi leta je bila za reševanje problema predlagana vrsta različnih algoritmičnih pristopov. V diplomski nalogi predstavimo matematično ozadje treh najvidnejših algoritmov iz literature in jih implementiramo v programskem jeziku Julia. Uspešnost njihovega reševanja primerjamo na bimatričnih igrah različnih velikosti in dveh različnih tipov. V nalogi izpostavimo vprašanje numerične stabilnosti algoritma Lemke-Howson, ki je v literaturi pomanjkljivo predstavljeno.

Language:Slovenian
Keywords:Nashevo ravnovesja, bimatrična igra, teorija iger, dominirana strategija, celoštevilsko programiranje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-161586 This link opens in a new window
COBISS.SI-ID:212962307 This link opens in a new window
Publication date in RUL:12.09.2024
Views:207
Downloads:70
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Algorithms for finding Nash equilibrium in bimatrix games
Abstract:
Finding Nash equilibrium in a bimatrix game is the problem of finding a strategy profile for the players of the game, where none of them can improve their payoffs by individually deviating from the existing strategy profile. The problem is computationally demanding and belongs to the class of PPAD complete problems. Through the years different algorithmic approaches were proposed for solving the problem. We present the mathematical background of three visible algorithms from the literature and implement them in Julia programming language. We evaluate their performance on bimatrix games of different sizes and two different types. We put forth the question of numerical stability in the case of Lemke-Howson algorithm, which we feel is not sufficiently described in the literature.

Keywords:Nash equilibrium, bimatrix game, game theory, dominated strategy, integer programming

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back