izpis_h1_title_alt

Štetje in klasifikacija vozil z uporabo globokega učenja
ID Gulič, Luka (Avtor), ID Skočaj, Danijel (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (13,52 MB)
MD5: 28562F82F2286D9266C8CE538315D52D

Izvleček
Umetna inteligenca se v zadnjem času zelo hitro razvija in nam omogoča reševanje problemov, kot je štetje prometa na cestah. Vendar razmere za detekcijo in klasifikacijo vozil niso vedno enake; nanje lahko vplivata zorni kot posnetka in vremenske razmere, prav tako različni tipi vozil. Implementirali smo metodo, ki prešteje vozila na posnetku ne glede na vremenske razmere. Uporabljeni so različni modeli za detekcijo: YOLOv8, SSD in RT-DETR. Vsi detekcijski modeli so predhodno naučeni na podatkovni množici COCO in doučeni na množici podatkov, pridobljenih iz različnih manjših podatkovnih množic. Iz pridobljenih rezultatov smo razbrali, da sta doučeni YOLOv8 in RT-DETR najboljša modela za detekcijo in štetje vozil v prometu.

Jezik:Slovenski jezik
Ključne besede:YOLOv8, cestni promet, vremenske razmere, učenje
Vrsta gradiva:Diplomsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2024
PID:20.500.12556/RUL-161578 Povezava se odpre v novem oknu
COBISS.SI-ID:212921859 Povezava se odpre v novem oknu
Datum objave v RUL:12.09.2024
Število ogledov:109
Število prenosov:21
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Vehicle Counting and Classifcation Using Deep Learning
Izvleček:
Artificial intelligence has been developing rapidly and now enables us to solve problems such as counting traffic on roads. However, conditions for vehicle detection and classification can vary, influenced by factors like the angle of view, weather conditions, and different types of vehicles. We have implemented a method that counts vehicles in footage regardless of weather conditions. Several detection models were used, including YOLOv8, SSD, and RT-DETR. All models were pre-trained on the COCO dataset and further trained on data compiled from various smaller datasets. Based on the results, we concluded that YOLOv8 and RT-DETR are the most effective models for detecting and counting vehicles in traffic.

Ključne besede:YOLOv8, road traffic, weather conditions, fine-tuned

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj