izpis_h1_title_alt

Določanje osvetlitve scene z ocenjevanjem svetlobne karte
ID Kolar, Klemen (Avtor), ID Čehovin Zajc, Luka (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (2,81 MB)
MD5: C2C887D4B5EC9313F2DE5997E28B466B

Izvleček
Problem s katerim se ukvarjamo v diplomskem delu je določanje osvetlitve scene z napovedovanjem svetlobnega vira za uporabo v obogateni resničnosti. Predlagamo novo tehniko določanja svetlobnih kart z uporabo globokih nevronskih mrež in novo sintetično podatkovno množico za učenje modela. Svetlobne karte predstavljajo kodiranje dveh kotov potrebnih za določanje vira svetlobe v matriko vseh možnih parov le-teh. Preizkusimo in primerjamo različne arhitekture hrbtenice nevronske mreže in različne tehnike augmentacije učnih podatkov modela. Za testiranje uspešnosti model primerjamo z že preizkušenima metodama napovedovanja radianov in ločenih kotov na realni nevideni množici podatkov. Končni model je dosegel bolj točne napovedi, kot prej omenjeni tehniki.

Jezik:Slovenski jezik
Ključne besede:strojno učenje, globoko učenje, obogatena resničnost, določanje osvetlitve
Vrsta gradiva:Diplomsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2024
PID:20.500.12556/RUL-161576 Povezava se odpre v novem oknu
COBISS.SI-ID:213358083 Povezava se odpre v novem oknu
Datum objave v RUL:12.09.2024
Število ogledov:196
Število prenosov:53
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Determining scene illumination by light map estimation
Izvleček:
The problem of this thesis is determining the scene illumination by predicting the light source for use in augmented reality. We propose a new technique for determining light maps using deep neural networks and a new synthetic dataset for model learning. Light maps represent the encoding of the two angles needed to determine the light source into a matrix of all possible pairs of them. We test and compare different neural network backbone architectures and different model learning data augmentation techniques. To test the performance, we compare the model with two previously tested methods for predicting radians and disjointed angles on a real unseen dataset. The final model achieved more accurate predictions than the previously mentioned techniques.

Ključne besede:machine learning, deep learning, augmented reality, light estimation

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj