izpis_h1_title_alt

Tschirnhausova kubika
ID Krumpak, Roy (Author), ID Žagar, Emil (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (592,87 KB)
MD5: 95821680EFDFF827379566CBB4F162FF

Abstract
V diplomski nalogi obravnavamo posebno vrsto krivulj, imenovano krivulje s pitagorejskim hodografom (PH krivulje). Na začetku definiramo osnovne pojme in jih uporabimo pri definiciji Tschirnhausove kubike kot primer posebnih krivulj. Definicije podkrepimo s slikami in izpeljavami enačb, postopke pa ponazorimo s primeri. Osrednji del naloge je posvečen kubičnim PH krivuljam, njihovi karakterizaciji in uporabnim lastnostim, pri čemer opišemo tudi razmišljanja, ki vodijo do nekaterih rezultatov. Glavni rezultat naloge je dokaz, da se lahko vsaka kubična PH krivulja zapiše kot odsek Tschirnhausove kubike. V zadnjem delu uporabimo kompleksna števila za enostavnejši prikaz istega zaključka.

Language:Slovenian
Keywords:krivulja, von Tschirnhaus, ovojnica, kavstika, nožiščna krivulja, pitagorejski hodograf
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-161561 This link opens in a new window
COBISS.SI-ID:213224195 This link opens in a new window
Publication date in RUL:12.09.2024
Views:161
Downloads:21
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Tschirnhausen cubic
Abstract:
The diploma thesis addresses a special type of curve known as Pythagorean-hodograph (PH) curves. Initially, we define the basic terms and apply them in the definition of the Tschirnhausen cubic as an example of special curves. The definitions are supported by images and derivations of equations, and the procedures are illustrated with examples. The central part of the thesis focuses on cubic PH curves, their characterization, and useful properties, as well as the reasoning that leads to certain results. The main result of the thesis is the proof that every cubic PH curve can be represented as a segment of the Tschirnhausen cubic. In the final part, we use complex numbers to reach the same conclusion in a simpler way.

Keywords:curve, von Tschirnhaus, envelope, caustic, pedal curve, Pythagorean-hodograph

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back