izpis_h1_title_alt

O idempotentih, nilpotentih, enotah in deliteljih niča končnih kolobarjev : delo diplomskega seminarja
ID Kalaković, Vanja (Avtor), ID Dolžan, David (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (357,62 KB)
MD5: C975AC27CA8835C5BDB893DC719E4D1D

Izvleček
Naj bo $R$ komutativen končen kolobar z enico. V tem delu se osredotočimo na število enot, deliteljev niča, idempotentov in nilpotentov kolobarja $R$. Najprej to naredimo za $R = M_n(F)$, kjer je $F$ polje. Ker je faktorski kolobar kolobarja $R$ po njegovem Jacobsonovem radikalu $J$ direkten produkt matričnih kolobarjev nad polji, izračunamo število enot, deliteljev niča, idempotentov in nilpotentov faktorskega kolobarja in nato sklepamo na te količine v kolobarju $R$. Tu opazimo, da števila idempotentov kolobarja $R$ ne znamo natančno izračunati, zato poiščemo zgornjo mejo za to število. Nato izračunamo še število enot, deliteljev niča, idempotentov in nilpotentov kolobarja $R = M_n({\mathbb Z}_{p^t})$, kjer je $p$ praštevilo. Za konec pa to naredimo še za kolobar $R = M_n({\mathbb Z}_m)$, kjer $m= p_1^{t_1} \ldots p_k^{t_k}$.

Jezik:Slovenski jezik
Ključne besede:končen kolobar, enota, delitelj niča, idempotent, nilpotent, Jacobsonov radikal
Vrsta gradiva:Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2024
PID:20.500.12556/RUL-161526 Povezava se odpre v novem oknu
UDK:512
COBISS.SI-ID:207765507 Povezava se odpre v novem oknu
Datum objave v RUL:12.09.2024
Število ogledov:139
Število prenosov:22
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:On the idempotents, nilpotents, units and zero-divisors of finite rings
Izvleček:
Let $R$ be a commutative finite ring with a unit. In this work, we focus on the number of units, zero-divisors, idempotents and nilpotents of the ring $R$. First, we do this for $R = M_n(F)$, where $F$ is a field. Since the factor ring of the ring $R$ by its Jacobson radical $J$ is a direct product of matrix rings over fields, we calculate the number of units, zero-divisors, idempotents and nilpotents of the factor ring and then infer these quantities in the ring $R$. Here we observe that the number of idempotents of the ring $R$ cannot be calculated exactly, so we find an upper bound for this number. We then calculate the number of units, zero-divisors, idempotents and nilpotents of the ring $R = M_n({\mathbb Z}_{p^t})$, where $p$ is a prime number. Finally, we do the same for the ring $R = M_n({\mathbb Z}_m)$, where $m= p_1^{t_1} \ldots p_k^{t_k}$.

Ključne besede:finite ring, unit, zero-divisor, idempotent, nilpotents, Jacobson radical

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj