izpis_h1_title_alt

Prepoznavanje odnosa do tematik v srbskem parlamentarnem govoru
ID Rajović, Anđela (Author), ID Robnik Šikonja, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,29 MB)
MD5: 8475E377174F2DE9EF9F7732E2BABF09

Abstract
Razumevanje parlamentarnega govora in širših političnih razprav je ključno za razumevanje političnih procesov in odločitev, ki vplivajo na družbo. Naloga obravnava problem strojne identifikacije in analize stališč poslancev in strank do različnih tematik s trirazredno klasifikacijo: ''za'', "proti", in "nevtralno". Analiza zajema primerjave stališč v srbskem parlamentu. Za analizo smo uporabili nabor ročno označenih podatkov, ki vsebuje 1019 učnih primerov. Ovrednotili smo več jezikovnih modelov, kot so XML-RoBERTa, BERTić, POLITICS, YugoGPT in Llama-3.1, ter primerjali njihove rezultate. Analiza potrjuje splošno znanje o političnih strankah in njihovih usmeritvah ter prikazujejo zmogljivost velikih jezikovnih modelov za analizo velikih zbirk besedil.

Language:Slovenian
Keywords:prepoznavanje stališč, veliki jezikovni modeli, parlamentarni govor
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-161459 This link opens in a new window
COBISS.SI-ID:212592131 This link opens in a new window
Publication date in RUL:11.09.2024
Views:196
Downloads:49
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Stance detection in Serbian parliamentary speech
Abstract:
Understanding parliamentary discourse and broader political debates is essential for comprehending the political processes and decisions that impact society. The thesis addresses the challenge of machine learning-based identification and analysis of the stances of parliament members and their parties on various topics using a three-class classification: 'for,' 'against,' and 'neutral.' The analysis includes comparisons of stances in the Serbian parliament. We utilized a manually annotated dataset containing 1,019 examples for the analysis. We evaluated several language models, such as XML-RoBERTa, BERTić, POLITICS, YugoGPT, and Llama-3.1, and compared their performance. Our findings confirm the general knowledge of political parties and their orientations, demonstrating the capability of large language models to analyze large datasets.

Keywords:stance detection, large language models, parliament speech

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back