izpis_h1_title_alt

Oblikovanje geodetskih kupol s formalizmom Thomsonove sfere
ID Kambič, Luka (Author), ID Brojan, Miha (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (9,64 MB)
MD5: DFA4593C970B522765EC1196D78B2F4E

Abstract
V delu želimo preveriti smiselnost uporabe nabitih delcev, v okviru posplošenega Thomsonovega problema, za določanje vozlišč geodetskih kupol. Dobre strukturne lastnosti geodetskih kupol temeljijo na enakomerni porazdelitvi vozlišč po površini sfere. Klasična metoda izgradnje geodetske kupole temelji na projekciji geodetskega poliedra na sfero, kar pa povzroči popačeno razporeditev. Algoritem HEA smo prilagodili za reševanje Thomsonovega problema z omejitvami, s čimer lahko upoštevamo vključke v strukturi (npr. odprtine). Definirali smo aproksimacijsko funkcijo porazdeljene obremenitve in z metodo končnih elementov izvedli strukturne analize različnih kupol. Izkaže se, da so napetosti v kupoli, ki temelji na Thomsonovi sferi, večinoma manjše kot v klasični geodetski kupoli, vozlišča pa so bolj enakomerno porazdeljena. Izjema je koncentracija napetosti v 5-7-5-kotnih defektih, kjer se zaradi uporab membran v konstrukciji, pojavi velika prečna sila. Z uporabljenim algoritmom se uspešno ustvarja kupole z vključki, posplošen Thomsonov problem pa je uporaben tudi za kontroliranje števila vozlišč na robu omejenih območij oziroma vključkov.

Language:Slovenian
Keywords:Thomsonov problem, geodetske kupole, omejena optimizacija, sfera, skeletne konstrukcije, membrane
Work type:Master's thesis/paper
Organization:FS - Faculty of Mechanical Engineering
Year:2024
PID:20.500.12556/RUL-161420 This link opens in a new window
Publication date in RUL:11.09.2024
Views:174
Downloads:61
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Designing geodesic domes through the formalism of the Thomson sphere
Abstract:
In this work we study the viability of using charged particles, in a generalized Thomson problem, to define the joints of geodesic domes. Good structural characteristics of geodesic domes come from the uniform distribution of dome joints on the surface of the sphere. Classical geodesic domes are constructed through the projection of geodesic polyhedrons on the sphere, which distorts the joint distribution. The HEA algorithm was adapted to perform constrained optimization of the Thomson problem, which alows us to include inserts (holes) in the structure. An approximate distributed load function was defined and used in finite element analysis of different domes. It turns out the stresses in the domes based on Thomson sphere are mostly lower than the ones in a classical geodesic dome, while the joints are more uniformly distributed. An exception arises in the form of 5-7-5-angled defects, where a large lateral force is present due to the use of membranes. The HEA algorithm successfully creates domes with inserts, while the generalized Thomson problem is also useful for controlling the number of joints on the constrained edges of the inserts.

Keywords:Thomson problem, geodesic domes, constrained optimization, sphere, skeleton frames, membranes

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back