izpis_h1_title_alt

Optimizacija in digitalizacija procesov Luke Koper
ID Jekovec, Kristjan (Author), ID Hočevar, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,61 MB)
MD5: 65C7642BFDCF19F03F52431ED1D8A62E

Abstract
Vsak dan skozi Luko Koper preide veliko število kontejnerjev, ki so nato iz luke odpremljeni z različnimi prevoznimi sredstvi, kot so vlaki, tovornjaki ali ladje. Ker ob prihodu ladje še ni natančno znano, kako bodo posamezni kontejnerji odpremljeni, sem razvil napovedni model, ki omogoča predvidevanje načina prevoza kontejnerjev iz luke. Takšna napoved je ključnega pomena, saj omogoča optimalno razporeditev kontejnerjev že ob prihodu v luko, kar povečuje učinkovitost dostopa do nadaljnjega transporta z vlakom ali tovornjakom. Posledično se zmanjša število nepotrebnih premikov kontejnerjev med skladiščenjem, kar pripomore k skrajšanju časa, potrebnega za dostavo vsebine kontejnerjev do končnega naročnika. Cilj naloge je bil razviti model z vsaj 70% natančnostjo, kar nam je uspelo preseči, saj smo z uporabo vseh razpoložljivih podatkov dosegli natančnost približno 80%.

Language:Slovenian
Keywords:strojno učenje, analiza podatkov, simulacija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-161383 This link opens in a new window
COBISS.SI-ID:212258819 This link opens in a new window
Publication date in RUL:10.09.2024
Views:173
Downloads:36
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Optimization and Digitalization of Processes at the Port of Koper
Abstract:
Every day, a large number of containers pass through the Port of Koper, where they are dispatched via various modes of transportation, such as trains, trucks, or ships. Since the exact mode of transportation for each container is unknown upon the ship’s arrival, I developed a predictive model that forecasts how containers will be transported out of the port. This prediction is crucial as it allows for the optimal allocation of containers upon their arrival at the port, thereby increasing the efficiency of access to subsequent transportation by train or truck. Consequently, this reduces the number of unnecessary container movements during storage and shortens the time required to deliver the container’s contents to the final customer. The goal of the thesis was to develop a model with at least 70% accuracy, which we successfully exceeded, achieving an accuracy of approximately 80%.

Keywords:machine learning, data analysis, data mining, simulation.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back