izpis_h1_title_alt

Uporaba superresolucije za izboljšanje kakovosti nizkoresolucijskih slik
ID Blazheski, David (Author), ID Štruc, Vitomir (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (44,65 MB)
MD5: 292935989AC5052F3BC69333B39EC755

Abstract
Diplomska naloga obravnava uporabo superresolucije za izboljšanje kakovosti nizkoresolucijskih slik. Superresolucija je postopek, pri katerem se iz slike nizke ločljivosti ustvarijo slike z višjo ločljivostjo. V nalogi je bil obravnavan problem nizke kakovosti naravnih klasičnih slik, kar lahko vpliva na različne aplikacije. Glavni cilj naloge je bil izboljšati kakovost teh slik s pomočjo naprednih modelov superresolucije, kot sta Real-ESRGAN in ResShift. Metodologija dela je vključevala pregled teoretičnih osnov superresolucije, razvoj in implementacijo modelov Real-ESRGAN in ResShift ter njuno testiranje na nizkoresolucijskih slikah. Uporabljene so bile različne metrike za merjenje uspešnosti superresolucije, kot so PSNR, SSIM, BRISQUE in NIQE, s katerimi je mogoče kvantitativno oceniti kakovost izboljšanja resolucije vhodnih slik. Rezultati naloge so pokazali, da lahko uporabljeni modeli znatno izboljšajo kakovost nizkoresolucijskih slik. Bolj natančno: model ResShift na splošno bolje deluje pri metrikah PSNR in SSIM v primerjavi z modelom Real-ESRGAN, kar nakazuje boljšo kakovost rekonstrukcije.

Language:Slovenian
Keywords:superresolucija, Real-ESRGAN, ResShift, kakovost slike
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-161364 This link opens in a new window
COBISS.SI-ID:207132419 This link opens in a new window
Publication date in RUL:10.09.2024
Views:273
Downloads:62
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Use of super-resolution for enhancing the quality of low-resolution images
Abstract:
The thesis deals with the use of super-resolution to improve the quality of lowresolution images. Super-resolution represents an image processing task that aims to transform a low-resolution image into a high-resolution image. In the thesis, we addressed the problem of low quality of input images, which can negatively impact the performance of various downstream computer vision tasks and applications. The main goal of the thesis was to improve the quality of these images using advanced super-resolution techniques such as Real-ESRGAN and ResShift. The methodology of the work included an overview of the theoretical foundations of super-resolution, development and implementation of Real-ESRGAN and ResShift models, and their testing on low-resolution images. Various quality metrics such as PSNR, SSIM, BRISQUE, and NIQE were used to objectively evaluate the capabilities of the tested superresolution techniques. The results of our experiments showed that the used models can significantly improve the quality of low-resolution images. More specifically, the ResShift model generally performs better on the PSNR and SSIM metrics compared to the Real-ESRGAN model, that it can ensure better reconstruction quality.

Keywords:super-resolution, Real-ESRGAN, ResShift, image quality

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back