izpis_h1_title_alt

Postopek izboljšave gostotnih map za štetje objektov z malo učnimi primeri
ID Avsec, Jernej (Author), ID Kristan, Matej (Mentor) More about this mentor... This link opens in a new window, ID Zavrtanik, Vitjan (Comentor)

.pdfPDF - Presentation file, Download (5,14 MB)
MD5: 5A337280A606B6295386FCC5382D3DCC

Abstract
V zadnjem času je bil narejen izjemen napredek na področju štetja objektov z malo učnimi primeri. Trenutni najuspešnejši globalni števci temeljijo na napovedovanju gostotnih map, katerih vsota je ocena števila objektov. Velika pomanjkljivost teh metod pa je, da rezultati niso razložljivi, saj ne podajo tudi lokacije objektov, kar je ključno za številne aplikacije. V diplomski nalogi predlagamo metodo CVDFC, ki s pomočjo difuzijskega modela izboljšuje kakovost gostotnih map in jih pretvori v natančne lokacijske točke objektov. Predlagani model uporablja pogojni difuzijski proces za generiranje lokacijskih točk, modul za štetje objektov pa izvede tlačenje lokalnih ne-maksimumov (NMS) nad generiranimi točkami, kar omogoča natančno štetje in lokalizacijo objektov na sliki. Eksperimentalni rezultati so pokazali, da metoda CVDFC pri nalogi štetja objektov za 30% prekaša referenčno metodo LOCA kombinirano z lokalizacijo objektov preko NMS. Prav tako se je CVDFC izkazala za konkurenčno glede na druge metode, kar kaže na njeno učinkovitost in praktično uporabnost na področju štetja objektov z malo primeri.

Language:Slovenian
Keywords:difuzijski modeli, štetje objektov, nevronske mreže, lokacijske točke, gostotna mapa
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-161318 This link opens in a new window
COBISS.SI-ID:211893507 This link opens in a new window
Publication date in RUL:09.09.2024
Views:191
Downloads:55
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:A density improvement method for few-shot object counting
Abstract:
Recently, significant progress has been made in the field of few-shot object counting. The current most successful global counters are based on predicting density maps, whose sum estimates the number of objects. However, a major drawback of these methods is that the results are not interpretable, as they do not provide object locations, which is crucial for many applications. In this thesis, we propose the CVDFC method, which uses a diffusion model to enhance the quality of density maps and convert them into precise object location points. The proposed model employs a conditional diffusion process to generate location points, and an object counting module performs non-maximum suppression (NMS) on the generated points, enabling accurate counting and localization of objects in the image. Experimental results showed that the CVDFC method outperforms the reference method LOCA combined with object localization via NMS by 30% in the task of object counting. CVDFC has also proven competitive compared to other methods, demonstrating its effectiveness and practical utility in few-shot object counting.

Keywords:diffusion models, object counting, neural networks, localization points, density map

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back