izpis_h1_title_alt

Problem matričnih napolnitev preko optimizacije na Riemannovih mnogoterostih
ID Poklukar, Ana (Author), ID Zalar, Aljaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (14,86 MB)
MD5: 2B0F61250A42FA8D95A8701D52F64EE3

Abstract
V diplomski nalogi obravnavamo problem matričnih napolnitev, pri katerem je cilj obnoviti manjkajoče vrednosti v matriki na podlagi razpoložljivih podatkov in minimizirati rang matrike. Osredotočimo se na algoritem, ki temelji na tehnikah Riemannovih mnogoterosti. V delu implementiramo algoritem, predstavljen v članku "Low-rank matrix completion by Riemannian optimization", in ga preizkusimo v kakovosti rekonstrukcije na sintetičnih podatkih in različnih slikovnih podatkih z dodanimi motnjami, šumom ali manjkajočimi piksli. Rezultate analiziramo in interpretiramo s pomočjo matematičnega ozadja algoritma.

Language:Slovenian
Keywords:matrične napolnitve, Riemannove mnogoterosti, optimizacija, minimizacija ranga, rekonstrukcija slik
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-161316 This link opens in a new window
COBISS.SI-ID:211501827 This link opens in a new window
Publication date in RUL:09.09.2024
Views:159
Downloads:47
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Matrix Completion Problem Through Optimization on Riemannian Manifolds
Abstract:
In this thesis, we address the problem of matrix completion, where the goal is to recover missing values in a matrix based on the available data and minimizing the rank of the matrix. We focus on an algorithm that relies on Riemannian manifold techniques. In the work, we implement the algorithm presented in the paper "Low-rank matrix completion by Riemannian optimization" and test its reconstruction quality on synthetic data and on various image data with added disturbances, noise, or missing pixels. The results are then analyzed and interpreted with the help of the mathematical background of the algorithm.

Keywords:matrix completion, Riemannian manifolds, optimization, rank minimization, image reconstruction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back