izpis_h1_title_alt

Analiza glavnih komponent večdimenzionalnih podatkov
ID Vitanova, Biljana (Author), ID Zalar, Aljaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,66 MB)
MD5: D3A5996D22D7C3765253897ABF026A9B

Abstract
Analiza glavnih komponent (PCA) je metoda, ki projecira podatke na ortogonalne podprostore. Težave PCA nastopijo ob prisotnosti osamelcev. Metoda robustne analize glavnih komponent (RPCA) odpravlja te težave z učinkovitim obravnavanjem osamelcev na matrikah. Z uporabo operacij, definiranih s tenzorsko algebro, so te metode razširjene na tenzorske pristope za obravnavo bolj kompleksnih, večdimenzionalnih podatkov. Aproksimacija tenzorjev s tenzorji nizkega ranga naredi te metode še posebej uporabne za odstranjevanje šuma iz signalov. Glavni cilj te diplomske naloge je preučiti dva algoritma, ki temeljita na tenzorskih pristopih, s poudarkom na razlagi matematičnega ozadja, izbiri parametrov in analizi učinkovitosti za odstranjevanje šuma. Zaradi možnosti vizualnega vrednotenja smo te metode testirali na zašumljenih slikah.

Language:Slovenian
Keywords:Analiza glavnih komponent, tenzorska algebra, aproksimacija nizkega ranga, rekonstrukcija slik
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-161315 This link opens in a new window
COBISS.SI-ID:211557635 This link opens in a new window
Publication date in RUL:09.09.2024
Views:353
Downloads:81
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Principal Component Analysis of Multidimensional data
Abstract:
Traditional Principal Component Analysis (PCA) aims to project data onto orthogonal subspaces. However, a limitation of PCA is that it struggles in presence of outliers. Robust Principal Component Analysis (RPCA) improves upon this by effectively handling outliers. Using operations defined with tensor algebra, these methods are further extended to tensor-methods, to handle more complex, multidimensional data. By approximating with low-rank data, these methods are particularly useful for signal denoising. The main goal of this thesis is to examine two such tensor-based algorithms. With emphasis to explain the mathematical background, parameter selection, and performance analysis. To provide visual explanation and validation, we test these algorithms on noisy images.

Keywords:Principal Component Analysis, tensor algebra, low-rank approximation, image reconstruction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back