Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Comparing Different Generative Adversarial Networks for Image Generation
ID
Nakov, Dimitar
(
Author
),
ID
Žabkar, Jure
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(519,88 KB)
MD5: A264058FC0DA99395F8DDC0C295BB9C3
Image galllery
Abstract
The thesis focuses on exploring the use of various types of Generative Adversarial Networks (GANs) for image generation. We analyze and compare different types of GANs, evaluating their effectiveness in generating high-quality images. Our approach includes a systematic comparison of architectures, implementation strategies, and the quality of generated images. The goal is to provide insight into the advantages and limitations of individual GAN models and to guide future research in this area, contributing to the development of artificial intelligence. Through comprehensive analysis and comparison of different GAN models, we aim to highlight their role in image generation and potential applications in various industries, such as art, entertainment, medicine, and more.
Language:
English
Keywords:
GAN
,
Artificial Intelligence
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2024
PID:
20.500.12556/RUL-161308
COBISS.SI-ID:
211592963
Publication date in RUL:
09.09.2024
Views:
158
Downloads:
22
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
Slovenian
Title:
Primerjava različnih izvedb generativnih nasprotniških mrež za generiranje slik
Abstract:
Diplomsko delo se osredotoča na raziskovanje uporabe različnih vrst Generativnih Nasprotnih Mrež (GANs) za generiranje slik. Analiziramo in primerjamo različne vrste GANs ter ocenjujemo njihovo učinkovitost pri generiranju visoko kakovostnih slik. Naš pristop vključuje sistematično primerjanje arhitektur, implementacijskih strategij in kakovosti ustvarjenih slik. Cilj je ponuditi vpogled v prednosti in omejitve posameznih modelov GANs ter voditi prihodnje raziskave na tem področju, prispevajoč k razvoju umetne inteligence.
Keywords:
GAN
,
Umetna Intelegenca
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back