izpis_h1_title_alt

Koalicijski grafi poti in ciklov : delo diplomskega seminarja
ID Zupan, Marjetka (Author), ID Klavžar, Sandi (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (413,94 KB)
MD5: 880871B2D2240EB76CAA9C9A26920A95

Abstract
Koalicija v grafu $G = (V(G), E(G))$ je par nedominantnih disjunktnih množic $V_1 \subseteq V(G)$ in $V_2 \subseteq V(G)$, katerih unija $V_1 \cup V_2$ je dominantna množica grafa $G$. Koalicijska razdelitev grafa $G$ je takšna razdelitev vozlišč $\pi = (V_1, V_2, \ldots, V_k)$, da je vsaka množica $V_i \in \pi$ bodisi dominantna in sestavljena iz enega vozlišča (stopnje $|V(G)| - 1$) bodisi nedominantna in tvori koalicijo z neko drugo nedominantno množico $V_j \in \pi$. Koalicijski graf grafa $G$ glede na koalicijsko razdelitev $\pi$ je graf $CG(G, \pi)$, ki ima za vozlišča množice $V_1, \ldots, V_k \in \pi$, vozlišči pa sta sosednji natanko tedaj, ko pripadajoči množici $V_i, V_j \in \pi$ tvorita koalicijo. V tem delu bomo opredelili koalicijske grafe poti in ciklov. Pokazali bomo, da je teh le končno mnogo, in natančno določili, kateri grafi so to.

Language:Slovenian
Keywords:razdelitev množice vozlišč, dominantna množica, koalicija, koalicijska razdelitev, koalicijski graf
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-161233 This link opens in a new window
UDC:519.17
COBISS.SI-ID:207624195 This link opens in a new window
Publication date in RUL:08.09.2024
Views:128
Downloads:45
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Coalition graphs of paths and cycles
Abstract:
A coalition in graph $G = (V(G), E(G))$ is a pair of two non-dominating disjoint sets $V_1 \subseteq V(G)$ and $V_2 \subseteq V(G)$, whose union $V_1 \cup V_2$ is a dominating set of $G$. A coalition partition in a graph $G$ is a vertex partition $\pi = (V_1, V_2, \ldots, V_k)$ such that every set $V_i \in \pi$ either is a dominating set consisting of a single (full) vertex, or is not a dominating set but forms a coalition with another non-dominating set $V_j \in \pi$. A coalition graph of graph $G$ with respect to the coalition partition $\pi$ is a graph $CG(G, \pi)$, the vertices of which correspond one-to-one with the sets $V_1, V_2, \ldots, V_k$ of $\pi$ and two vertices are adjacent in $CG(G, \pi)$ if their corresponding sets in $\pi$ form a coalition. In this paper we characterize the coalition graphs of paths and cycles. We show that there are only finitely many coalition graphs of paths and finitely many coalition graphs of cycles and we identify precisely which they are.

Keywords:vertex partition, dominating set, coalition, coalition partition, coalition graph

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back