izpis_h1_title_alt

Protokoli mobilnih omrežij pete generacije
ID Gumilar, Luka (Author), ID Jakus, Grega (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (15,94 MB)
MD5: 7141264CA7758473753CC01A309F773B

Abstract
Peta generacija mobilnih omrežij (5G) nam nudi še večje hitrosti in nižje zakasnitve glede na predhodnike. Njen razvoj je temeljil na raznovrstnih primerih uporabe, ki segajo od proizvodnje, avtomobilnosti, energije, zdravstva, kmetovanja, vse do področja zabave. Glede na te so bile postavljene želene lastnosti in zahteve za delovanje omrežij 5G. Organizacija ITU R (International Telecommunication Union – Radiocommunication Sector) kot najpomembnejše lastnosti novega omrežja omenja izboljšano mobilno širokopasovno omrežje (Enhanced Mobile Broadband – eMBB), izjemno zanesljive komunikacije z nizkimi zakasnitvami (Ultra-Reliable and Low Latency Communications – URLLC) ter medsebojne komunikacije izredno velikega števila naprav (Massive Machine Type Communications – mMTC). Omenjenim lastnostim organizacija 3GPP (Third Generation Partnership Project) dodaja še upravljanje z omrežjem in izboljšane komunikacije z vozili (Enhancement of Vehicle-to-Everything – eV2X). Omrežje 5G sestavljajo štirje osnovni elementi: mobilni terminal, radijsko dostopovno in jedrno omrežje ter podatkovno omrežje. Omrežje 5G razlikuje med dvema načinoma postavitve, samostojnim (standalone – SA) in nesamostojnim (non-standalone – NSA). Medtem ko uporablja samostojni način le eno vrsto baznih postaj (LTE ali 5G), uporablja nesamostojni kombinacijo obeh. Prav tako pa lahko vsak od teh načinov uporablja jedro LTE (Evolved Packet Core – EPC) ali 5G. Protokolni sklad se v radijskem delu omrežja 5G deli na uporabniško in nadzorno ravnino. Fizični sloj je na obeh ravninah enak. Povezavni sloj na nadzorni ravnini vključuje protokole MAC (Medium Access Control), RLC (Radio Link Control), PDCP (Packet Data Convergence Protocol), na uporabniški ravnini pa je prisoten še protokol SDAP (Service Data Adaptation Protocol). Omrežni sloj se v radijskem dostopovnem omrežju pojavi le na nadzorni ravnini, kjer ga sestavljata protokol RRC (Radio Resource Control) in podsloj NAS (Non-Access Stratum). Naloge fizičnega sloja so odkrivanje in odpravljanje napak, preslikave med transportnimi in fizičnimi kanali, sinhronizacija hitrosti prenosa podatkov, dodeljevanje radijskih virov idr. 3GPP je v okviru 5G uvedel visoko frekvenčno območje (FR2) v območju centimetrskih in milimetrskih valovnih dolžin. Radijski okvir je v omrežju 5G razdeljen na podokvirje, ti pa vsebujejo različno število časovnih rezin, odvisno od razmika med podnosilci (Subcarrier Spacing – SCS). Razmik 15 kHz je bil uporabljen že v omrežju LTE, medtem ko je omrežje 5G uvedlo še nekatere večje vrednosti, ki naredijo simbole OFDM (Orthogonal Frequency Division Multiplexing) krajše in bistveno pripomorejo k nižjim zakasnitvam. Povezavni sloj na uporabniški ravnini sestavljajo kar štirje podsloji. Protokol MAC je od njih najnižji, njegove glavne naloge pa so preslikava med logičnimi in transportnimi kanali, (de)multipleksiranje uporabniških sporočil v transportne bloke, popravljanje napak z mehanizmom HARQ (Hybrid Automatic Repeat Request) idr. Okvirji MAC so v omrežju 5G sestavljeni iz manjših podokvirjev, vsak s pripadajočo podglavo. Protokol RLC lahko deluje v treh različnih prenosnih načinih, in sicer transparentnem načinu (Transparent Mode – TM), načinu brez potrditev (Unacknowledged Mode – UM) in načinu s potrditvami (Acknowledged Mode – AM). V transparentnem načinu so sporočila zgolj posredovana skozi sloj, način brez potrditev podpira segmentacijo in ponovno sestavljanje ter zavrženje napačnih oz. podvojenih sporočil, način s potrditvami pa poleg vseh funkcij načina UM vključuje še popravljanje napak z mehanizmom ARQ (Automatic Repeat Request), ponovno segmentacijo pokvarjenih oz. izgubljenih sporočil ter odkrivanje podvojenih sporočil. Protokol RLC v 5G ne izvaja več spajanja sporočil, prav tako opušča urejanje sporočil po vrstnem redu, s čimer še bolje zadosti visokim zahtevam po nizkih zakasnitvah. Glavne naloge protokola PDCP so oštevilčevanje podatkovnih radijskih nosilcev, kompresija glave, zaščita integritete na nadzorni ravnini, šifriranje sporočil ter detekcija in odstranjevanje podvojenih sporočil. Protokol PDCP v 5G podpira prenos in dostavo sporočil brez ohranjanja vrstnega reda. Podpira tudi podvojevanje sporočil. Z vsem tem poveča zanesljivost s prenosom prek več virov. Protokol SDAP je v omrežju 5G nov, saj v omrežju LTE še ni bil prisoten. Njegova glavna naloga je preslikava pretoka z določeno stopnjo kvalitete storitve na podatkovne radijske nosilce. Omrežni sloj vsebuje na nadzorni ravnini protokol RRC in podsloj NAS. Glavna naloga protokola RRC je vzpostavitev in ohranjanje povezave med mobilnimi terminali in bazno postajo. To mu uspe z nalogami, kot so razpršeno oddajanje sistemskih informacij, oddajanje pozivnih sporočil, upravljanje z mobilnostjo in kvaliteto storitve, zagotavljanje varnostnih storitev idr. Podsloj NAS povezuje mobilni terminal z elementom AMF (Access and Mobility Management Function) v jedrnem omrežju 5G, zato pravimo, da se nahaja onkraj protokolov dostopovnega omrežja. Element AMF skrbi za številne postopke, kot so npr. overjanje, avtorizacija, upravljanje z mobilnostjo idr. Podsloj NAS vključuje protokola 5GSM (5G System Session Management) za upravljanje s sejami in 5GMM (5G System Mobility Management) za upravljanje z mobilnostjo. Protokolni sklad se v jedrnem omrežju 5G deli na uporabniško in nadzorno ravnino. Uporabniška ravnina skrbi za prenos uporabniških podatkov, usmerjanje sporočil, nadzor nad podatkovnim prometom, zagotavljanje kvalitete storitve ter beleženje podatkov o zaračunavanju, nadzorna ravnina pa za overjanje, avtorizacijo, skladnost s predpisanimi načeli in politiko ter upravljanje z mobilnostjo. Največja sprememba v primerjavi z omrežjem LTE je uvedba storitveno usmerjene arhitekture (Service-Based Architecture – SBA), ki jo sestavlja veliko število omrežnih funkcij.

Language:Slovenian
Keywords:mobilno omrežje 5G, protokolni sklad, protokolno sporočilo
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-161061-58366444-e15f-65d4-810c-a6e8ba9288cd This link opens in a new window
COBISS.SI-ID:206873347 This link opens in a new window
Publication date in RUL:06.09.2024
Views:200
Downloads:56
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Fifth generation mobile network protocols
Abstract:
The fifth generation of mobile networks (5G) is capable of offering higher speeds and lower latencies compared to its predecessors. Its development is based on various use cases ranging from manufacturing, automotive, energy, healthcare, agriculture, all the way to the entertainment sector. Based on these use cases, the desired characteristics and requirements for the operation of 5G networks have been established. The ITU-R (International Telecommunication Union – Radiocommunication Sector) highlights the most important features of the new network as Enhanced Mobile Broadband (eMBB), Ultra-Reliable and Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC). Additionally, the 3GPP (Third Generation Partnership Project) adds Network Operation and Enhancement of Vehicle-to-Everything (eV2X) to the previously mentioned three. The 5G network is composed of four basic elements: the user equipment, the radio access and the core network, and the data network. The 5G network distinguishes between two deployment options: standalone (SA) and non-standalone (NSA). While the standalone option uses only one type of base station (LTE or 5G), the non-standalone option uses a combination of both. Furthermore, each of these options can use either the LTE (Evolved Packet Core – EPC) or the 5G core. The protocol stack in the 5G radio access network is divided into the user plane and the control plane. The physical layer is the same on both planes. The data link layer on the control plane includes the MAC (Medium Access Control), RLC (Radio Link Control), and PDCP (Packet Data Convergence Protocol) protocols, while on the user plane, it also includes the SDAP (Service Data Adaptation Protocol) protocol. The network layer appears in the radio access network only on the control plane, consisting of the RRC (Radio Resource Control) protocol and the NAS (Non-Access Stratum) sublayer. The functions of the physical layer include error detection and correction, mapping between transport and physical channels, data rate synchronization, radio resource allocation, and more. Within 5G, 3GPP has introduced a higher frequency range (FR2) in the centimeter and milimeter wavelengths. The radio frame in the 5G network is divided into subframes, each containing a different number of slots, depending on the subcarrier spacing (SCS). The 15 kHz spacing was already used in the LTE network, while the 5G introduced additional larger values, which make OFDM (Orthogonal Frequency Division Multiplexing) symbols shorter and significantly contribute to lower latencies. The data link layer on the user plane consists of four sublayers. The MAC protocol is the lowest, with its main functions being mapping between logical and transport channels, (de)multiplexing service data units into transport blocks, error correction using the HARQ (Hybrid Automatic Repeat Request) mechanism, and more. MAC frames in the 5G network consist of smaller subframes, each with an associated subheader. The RLC protocol can operate in three different transmission modes: Transparent Mode (TM), Unacknowledged Mode (UM), and Acknowledged Mode (AM). In transparent mode, messages are merely forwarded through the layer, unacknowledged mode supports segmentation, reassembly, and discarding of erroneous/duplicate messages, while acknowledged mode, in addition to all UM mode functions, also provides error correction using the ARQ (Automatic Repeat Request) mechanism, re-segmentation of corrupted/lost messages, and detection of duplicate messages. RLC in 5G no longer performs concatenation, and it also omits in-order message delivery, further meeting the high network demands for low latency. The main functions of the PDCP protocol include numbering data radio bearers, header compression, integrity protection on the control plane, ciphering, and the detection and removal of duplicate messages. In 5G, PDCP supports out-of-order message delivery and message duplication, thereby increasing reliability by transmission on different links. The SDAP protocol is new in the 5G network, as it was not present in the LTE network. The main function of this protocol is the Quality of Service (QoS) flow to data radio bearers mapping. The network layer on the control plane contains the RRC protocol and the NAS sublayer. The main function of the RRC protocol is to establish and maintain connection between user equipments and the base station. It accomplishes this through functions such as broadcasting system information, transmitting paging messages, mobility and quality of service management, providing security services, and more. The NAS sublayer connects the user equipment with the AMF (Access and Mobility Management Function) element in the 5G core network, hence is located beyond the radio access network protocols. The AMF element handles numerous processes such as authentication, authorization, mobility management, and more. The NAS sublayer contains the 5GSM (5G System Session Management) protocol for session management and 5GMM (5G System Mobility Management) for mobility management. The protocol stack in the 5G core network is divided into the user plane and the control plane. The user plane manages user data transmission, message routing, traffic control, provision of the required quality of service, and recording of billing data, while the control plane handles authentication, authorization, compliance with the specified principles and policies, and mobility management. The biggest change compared to the LTE network is the introduction of Service-Based Architecture (SBA), which consists of numerous network functions.

Keywords:5G mobile network, protocol stack, protocol data unit

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back