izpis_h1_title_alt

Detekcija anomalij v meritvah onesnaževal zraka
ID Volk, Luka (Avtor), ID Vračar, Petar (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Faganeli Pucer, Jana (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (1,32 MB)
MD5: 16070E059063B61C4794DA2226B807DB

Izvleček
Onesnaženost zraka predstavlja resen okoljski problem, ki lahko slabo vpliva na zdravje ljudi in kakovost okolja. V diplomski nalogi se osredotočamo na detekcijo anomalij v meritvah onesnaževal zraka: žveplovega dioksida (SO2), ozona (O3), dušikovega dioksida (NO2), dušikovega oksida (NO), ogljikovega monoksida (CO) in delcev PM10. Podatki so bili pridobljeni s strani Agencije Republike Slovenije za okolje (ARSO). Zaznavanje anomalij v meritvah je ključno za zagotavljanje zanesljivih podatkov, saj lahko anomalije v podatkih kažejo na tehnične napake senzorjev oziroma kakšen drug izreden dogodek. V nalogi smo implementirali in primerjali tri različne modele strojnega učenja: XGBoost, LSTM samokodirnik in matrični profil. Med analiziranimi metodami se je najbolje izkazal model XGBoost, saj je uspešno zaznal največje število anomalij ter dosegel najvišje vrednosti metrik za ocenjevanje uspešnosti.

Jezik:Slovenski jezik
Ključne besede:detekcija anomalij, onesnaženost zraka, strojno učenje, XGBoost, LSTM samokodirnik, matrični profil, časovne vrste
Vrsta gradiva:Diplomsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2024
PID:20.500.12556/RUL-160941 Povezava se odpre v novem oknu
COBISS.SI-ID:211114755 Povezava se odpre v novem oknu
Datum objave v RUL:05.09.2024
Število ogledov:181
Število prenosov:48
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Anomaly detection in air pollutant measurements
Izvleček:
Air pollution is a serious environmental problem that can negatively impact human health and environmental quality. This thesis focuses on anomaly detection in air pollutant measurements: sulfur dioxide (SO2), ozone (O3), nitrogen dioxide (NO2), nitrogen oxide (NO), carbon monoxide (CO), and particulate matter PM10. The data was obtained from ARSO. Detecting anomalies in these measurements is crucial for ensuring reliable data, as anomalies can indicate sensor malfunctions or other exceptional events. In this thesis, we implemented and compared three different machine learning models: XGBoost, LSTM autoencoder, and matrix profile. Among the analyzed methods, the XGBoost model performed the best, successfully detecting the highest number of anomalies and achieving the highest evaluation metrics.

Ključne besede:anomaly detection, air pollution, machine learning, XGBoost, LSTM autoencoder, matrix profile, time series

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj