izpis_h1_title_alt

Detekcija anomalij v meritvah onesnaževal zraka
ID Volk, Luka (Author), ID Vračar, Petar (Mentor) More about this mentor... This link opens in a new window, ID Faganeli Pucer, Jana (Comentor)

.pdfPDF - Presentation file, Download (1,32 MB)
MD5: 16070E059063B61C4794DA2226B807DB

Abstract
Onesnaženost zraka predstavlja resen okoljski problem, ki lahko slabo vpliva na zdravje ljudi in kakovost okolja. V diplomski nalogi se osredotočamo na detekcijo anomalij v meritvah onesnaževal zraka: žveplovega dioksida (SO2), ozona (O3), dušikovega dioksida (NO2), dušikovega oksida (NO), ogljikovega monoksida (CO) in delcev PM10. Podatki so bili pridobljeni s strani Agencije Republike Slovenije za okolje (ARSO). Zaznavanje anomalij v meritvah je ključno za zagotavljanje zanesljivih podatkov, saj lahko anomalije v podatkih kažejo na tehnične napake senzorjev oziroma kakšen drug izreden dogodek. V nalogi smo implementirali in primerjali tri različne modele strojnega učenja: XGBoost, LSTM samokodirnik in matrični profil. Med analiziranimi metodami se je najbolje izkazal model XGBoost, saj je uspešno zaznal največje število anomalij ter dosegel najvišje vrednosti metrik za ocenjevanje uspešnosti.

Language:Slovenian
Keywords:detekcija anomalij, onesnaženost zraka, strojno učenje, XGBoost, LSTM samokodirnik, matrični profil, časovne vrste
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-160941 This link opens in a new window
COBISS.SI-ID:211114755 This link opens in a new window
Publication date in RUL:05.09.2024
Views:184
Downloads:48
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Anomaly detection in air pollutant measurements
Abstract:
Air pollution is a serious environmental problem that can negatively impact human health and environmental quality. This thesis focuses on anomaly detection in air pollutant measurements: sulfur dioxide (SO2), ozone (O3), nitrogen dioxide (NO2), nitrogen oxide (NO), carbon monoxide (CO), and particulate matter PM10. The data was obtained from ARSO. Detecting anomalies in these measurements is crucial for ensuring reliable data, as anomalies can indicate sensor malfunctions or other exceptional events. In this thesis, we implemented and compared three different machine learning models: XGBoost, LSTM autoencoder, and matrix profile. Among the analyzed methods, the XGBoost model performed the best, successfully detecting the highest number of anomalies and achieving the highest evaluation metrics.

Keywords:anomaly detection, air pollution, machine learning, XGBoost, LSTM autoencoder, matrix profile, time series

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back