izpis_h1_title_alt

Kvazi-interpolacija z B-zlepki
ID Korotaj, Luka (Author), ID Kanduč, Tadej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (429,86 KB)
MD5: AE944D6E5FEC01C4CDFF61554DCB24C9

Abstract
V diplomskem delu se ukvarjamo s kvazi-interpolacijo. Pri klasični interpolaciji želimo potegniti krivuljo skozi vse podane točke, kar tipično privede do reševanja velikega sistema linearnih enačb, s kvazi-interpolacijo pa rešujemo več manjših, lokalnih sistemov. Pri kvazi-interpolaciji točk ne interpoliramo, temveč se jim dovolj dobro približamo. K nalogi pristopamo tako, da najprej pogledamo primer interpolacije s polinomi, potem pa definiramo in pojasnimo osnovne gradnike obravnavanih kvazi-interpolantov, to so t.i. B-zlepki. Zatem kvazi-interpolacijo formalno definiramo in dokažemo red konvergence za izbrane kvazi-interpolante. Tekom naloge izpeljane metode tudi implementiramo in jih prikažemo na grafih. Na koncu izpeljemo lokalno metodo najmanjših kvadratov in si pogledamo praktičen primer uporabe kvazi-interpolacije z odstranitvijo šuma iz signala.

Language:Slovenian
Keywords:B-zlepki, aproksimacija, interpolacija, kvazi-interpolacija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-160936 This link opens in a new window
COBISS.SI-ID:210057475 This link opens in a new window
Publication date in RUL:05.09.2024
Views:175
Downloads:34
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Quasi-interpolation with B-splines
Abstract:
In this thesis, we focus on quasi-interpolation. In classical interpolation, the goal is to draw a curve through all given points, which often results in a large system of linear equations. Quasi-interpolation, on the other hand, involves solving several smaller, local systems. With quasi-interpolation, we do not interpolate the points directly; instead, we approximate them sufficiently well. Our approach begins by examining an example of interpolation with polynomials, followed by the definition and explanation of the fundamental building blocks of quasi-interpolants, namely B-splines. We then formally define quasi-interpolation and prove the order of convergence for chosen quasi-interpolants. Throughout the thesis, we implement the derived methods and present them graphically. Finally, we derive the local method of least squares and explore a practical application of quasi-interpolation in noise removal from a signal.

Keywords:B-splines, approximation, interpolation, quasi-interpolation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back