izpis_h1_title_alt

Kvantna integrabilnost in kaotičnost v 2D Heisenbergovem modelu
ID Zevnik, Domen (Author), ID Prosen, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,05 MB)
MD5: 3218F1D5F830BF07B59C93EF64EE6A91

Abstract
V tej magistrski nalogi raziskujemo kvantno integrabilnost in kaos skozi študij 2D Heisen- bergovega modela, ki je pomembna razširitev dobro poznanega 1D Heisenbergovega modela. Kvantno integrabilnost definiramo s pomočjo Algebraičnega Bethejevega nastavka in dokažemo, da je 2D Heisenbergov model integrabilen, če upoštevamo samo vodoravne interakcije. Poleg tega kvantno integrabilnost definiramo tudi preko Poissonove statistike, kjer sistem velja za integrabilen, če statistika njegovega spektra sledi Poissonovi porazdelitvi. Kvantni kaos pa definiramo z uporabo teorije naključnih matrik. Pravimo, da je sistem kaotičen, če statistika spektra sledi eni izmed Wigner-Dysonovih porazdelitev. Obe definiciji sta veljavni le v primeru, ko so v sistemu odpravljene vse prostorske simetrije. Na primeru 2D Heisenbergovega modela opišemo simetrije in pojasnimo, kako jih odpraviti. Na koncu se osredotočimo na numerične izračune in s pomočjo porazdelitev razmerij raz- mikov sosednjih nivojev spektra ter spektralnega oblikovnega faktorja pokažemo, da v sistemu pride do zloma integrabilnosti ob povečanju moči vertikalnih interakcij, kar ponazarja prehod v kaotično dinamiko.

Language:Slovenian
Keywords:Algebraični Bethejev nastavek, 2D Heisenbergov model, kvantna integrabilnost, kvantni kaos, razmerje razmikov sosednjih energij spektra, spektralni oblikovni faktor.
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-160731-dd4c8373-1bc9-f622-5796-6d57bd41b8db This link opens in a new window
COBISS.SI-ID:206425091 This link opens in a new window
Publication date in RUL:04.09.2024
Views:189
Downloads:489
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Quantum integrability and chaos in the 2D Heisenberg model
Abstract:
In this master’s thesis, we explore quantum integrability and chaos through the study of the 2D Heisenberg model, which is an important extension of the well-known 1D Heisenberg model. Quantum integrability is defined using Algebraic Bethe ansatz, and we demonstrate that the 2D Heisenberg model is integrable when considering only horizontal interactions. We give an alternative definition of quantum integrability using Poisson statistics, where a system is considered integrable if the statistics of its spectrum follow the Poisson distribution. Quantum chaos is defined using random matrix theory, where a system is said to be chaotic if the spectral statistics follow one of the Wigner-Dyson distributions. These definitions are valid only when all spatial symmetries in the system have been removed. We describe the symmetries of the 2D Heisenberg model and explain how to remove them. Finally, we focus on numerical analysis and demonstrate, through the use of level spacing ration and the spectral form factor, that integrability breaks down in the system as the strength of the vertical interactions increases, indicating a transition to chaotic dynamics.

Keywords:Algebraic Bethe ansatz, 2D Heisenberg model, quantum integrability, quantum chaos, level spacing ratio, spectral form factor.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back