izpis_h1_title_alt

Metrična dimenzija grafa deliteljev niča : delo diplomskega seminarja
ID Možina, Tadeja (Author), ID Dolžan, David (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (408,75 KB)
MD5: 5B21F5972E387CF3525BACA2CC8312D2

Abstract
V diplomski nalogi preučujemo metrično dimenzijo grafa deliteljev niča kolobarja. Za kolobar $R$ definiramo njegov graf deliteljev niča $\Gamma(R)$ kot enostaven neusmerjen graf, katerega vozlišča so delitelji niča, med dvema različnima vozliščema pa je povezava natanko tedaj, ko se zmnožita v 0. Metrična dimenzija takega grafa je velikost najmanjše urejene podmnožice njegovih vozlišč za katero velja, da imata poljubni vozlišči v grafu različna vektorja razdalj do elementov te množice. Najprej raziščemo kako omejiti metrično dimenzijo grafa. V ta namen definiramo množice dvojčkov grafa, to so podmnožice vozlišč grafa, kjer so vozlišča v isti množici dvojčkov, če imajo enake soseščine. Nato si podrobneje ogledamo metrični dimenziji grafov deliteljev niča kolobarja ostankov po danem modulu in kolobarja matrik nad danim poljem.

Language:Slovenian
Keywords:metrična dimenzija, graf deliteljev niča, kolobar, rešljiva množica, množica dvojčkov
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-160587 This link opens in a new window
UDC:519.17
COBISS.SI-ID:206042883 This link opens in a new window
Publication date in RUL:31.08.2024
Views:159
Downloads:21
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Metric dimension of a zero-divisor graph
Abstract:
In this thesis, we study the metric dimension of a zero-divisor graph of a ring. For a ring $R$ we define its zero-divisor graph $\Gamma(R)$ as a simple undirected graph whose vertices are zero-divisors and two distinct vertices are adjacent if and only if their product is 0. Metric dimension of such graph is the size of the smallest ordered subset of its vertices for which two distinct vertices in graph have distinct vectors of distances to elements of this subset. Firstly, we study how to limit the metric dimension of a graph, mainly with twin-sets of a graph, subsets of vertices of a graph where vertices are in a same twin-set if they have the same neighbourhoods. Then we closely study the metric dimension of a zero-divisor graph of the ring of integers modulo n and of the ring of matrices over a field.

Keywords:metric dimension, zero-divisor graph, ring, resolving set, twin-set

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back