izpis_h1_title_alt

Prepoznava oseb na odprtih množicah slik uhljev
ID Trojer, Sebastijan (Author), ID Emeršič, Žiga (Mentor) More about this mentor... This link opens in a new window, ID Meden, Blaž (Comentor)

.pdfPDF - Presentation file, Download (1,10 MB)
MD5: 46AADC64A41674ECD6CA81356F3D6C7C

Abstract
Diplomska naloga se ukvarja z izzivom prepoznavanja oseb v okolju odprtih množic podatkov. V nalogi je predstavljen pristop, ki temelji na uporabi metod za prepoznavo na odprtih množicah z uporabo siamskih nevronskih mrež in trojne cenilne funkcije. Glavni cilj je bil optimizirati obstoječe modele prepoznavanja s pomočjo naprednih tehnik in algoritmov ter primerjati rezultate klasičnih in optimiziranih modelov. Rezultati kažejo, da optimizirani modeli ne presežejo zmogljivosti klasičnih, kar kaže na težavo z uporabo optimiziranih pristopov pri reševanju problema prepoznavanja oseb na odprtih množicah podatkov, omogočajo pa bolj časovno učinkovito implementacijo. Pridobljeno znanje lahko služi kot temelj za nadaljnje raziskave in razvoj na tem področju.

Language:Slovenian
Keywords:globoko učenje, biometrija, računalniški vid
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-160505 This link opens in a new window
COBISS.SI-ID:208484355 This link opens in a new window
Publication date in RUL:29.08.2024
Views:226
Downloads:41
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Openset person recognition on ear images
Abstract:
The thesis addresses the challenge of recognizing individuals in an open set data environment. It presents an approach based on the use of methods for open set recognition using siamese neural networks and triplet loss. The main objective was to optimize existing recognition models using advanced techniques and algorithms and to conduct a comparative analysis between classical and optimized models. The results show that the optimized models do not exceed performance of classical models, indicating the proposed methods do not have the potential to be used in solving the problem of recognizing individuals in open set data environments, however they offer an implementation with better time performance. The acquired knowledge can serve as a foundation for further research and development in this field.

Keywords:deep learning, biometry, computer vision

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back