izpis_h1_title_alt

Sestavljeni Poissonov proces in njegova uporaba v financah : delo diplomskega seminarja
ID Rozman, Anej (Author), ID Raič, Martin (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (989,55 KB)
MD5: FDFEBAC469A5673C86789B5DDCE954C3
.rR - Appendix, Download (23,37 KB)
MD5: 4FFBD1C9F14A28A6063B1AD8B4B896EB

Abstract
V prvem delu diplome najprej definiramo sestavljeno Poissonovo porazdelitev in izpeljemo obliko njenih rodovnih funkcij, obravnavamo njeno povezavo s splošnimi porazdelitvami in izpeljemo Panjerjevo rekurzivno shemo. Nato definiramo sestavljeni Poissonov proces in pokažemo nekaj osnovnih lastnosti kot je neodvisnost in stacionarnost prirastkov. Izpeljemo nekaj rezultatov, ki jih dobimo, ko sestavljeni Poissonov proces markiramo. V drugem delu diplome obravnavamo aplikacijo sestavljenega Poissonovega procesa v Cramér-Lundbergovem modelu. Definiramo verjetnost propada in preživetja ter slednjo izrazimo z defektno prenovitveno enačbo. Dokažemo Lundbergovo neenakost in obravnavamo asimptotično obnašanje verjetnosti propada, ko zahtevke modeliramo z lahkorepimi in težkorepimi porazdelitvami. Obnašanje verjetnosti propada na koncu praktično prikažemo z večkratnim simuliranjem procesa tveganja.

Language:Slovenian
Keywords:slučajni proces, sestavljena Poissonova porazdelitev, Panjerjeva rekurzivna shema, sestavljeni Poissonov proces, markiranje, Cramér-Lundbergov model, Verjetnost propada, lahkorepa porazdelitev, težkorepa porazdelitev
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-160474 This link opens in a new window
UDC:519.2
COBISS.SI-ID:205692419 This link opens in a new window
Publication date in RUL:29.08.2024
Views:209
Downloads:73
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Compound Poisson process and its application in finance
Abstract:
In the first half of the diploma, we define the compound Poisson distribution and derive the form of its generating functions. We discuss its connection with general distributions and derive the Panjer recursion scheme. We then define the compound Poisson process and show some basic properties such as the independence and stationarity of increments. We derive some results that follow from a space-time decomposition of the compound Poisson process. In the second half of the diploma, we discuss the application of the compound Poisson process in the Cramér-Lundberg model. We define the probability of ruin and survival and express the latter as a defective renewal equation. We prove the Lundberg inequality and discuss the asymptotic behavior of the probability of ruin when claims are modeled with light-tailed and heavy-tailed distributions. We practically demonstrate the behavior of the probability of ruin by repeatedly simulating the risk process.

Keywords:stochastic process, compound Poisson distribution, Panjer recursion scheme, compound Poisson process, space-time decomposition, Cramér-Lundberg model, probability of ruin, light-tailed distribution, heavy-tailed distribution

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back