Zaznavanje sarkazma je naloga obdelave naravnega jezika, pri kateri ugotavljamo, ali je izjava sarkastična ali ne. Tesno je povezana z analizo mnenj, saj pogosto spremeni površinsko razumljeno mnenje. Kljub mnogim raziskavam ostaja sarkazem izziv za avtomatsko detekcijo, saj so sarkastični stavki odvisni od konteksta in jih pogosto spremljajo neverbalni znaki. Nedavni pristopi k zaznavanju sarkazma večinoma uporabljajo arhitekturo nevronskih mrež transformer v jezikih z veliko viri, predvsem v angleščini. Za izdelavo učne množice za zaznavanje sarkazma v slovenščini smo uporabili dve sodobni tehniki strojnega prevajanja in jezikovnega modeliranja. Prvi pristop uporablja srednje velik model transformer, učen posebej za nevronsko strojno prevajanje, medtem ko druga metoda uporablja zelo velik generativni jezikovni model. Raziskali smo uporabnost teh učnih množic in kako velikost modelov vpliva na njihovo sposobnost zaznavanja sarkazma. Z generiranimi podatki smo ustvarili več modelov in napovedni ansambel, sestavljen iz več jezikovnih modelov. Pristope smo ovrednotili z uporabo uveljavljenih metod. Rezultati kažejo, da večji modeli presegajo manjše, ansambli pa nekoliko izboljšajo uspešnost zaznavanja sarkazma. Naš najboljši ansambel doseže $\text{F}_1$-oceno 0,765.
|