izpis_h1_title_alt

Segmentacija in volumetrična analiza magnetnoresonančnih slik možganov ploda
ID Masterl, Ema (Author), ID Špiclin, Žiga (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (13,55 MB)
MD5: FA7E04A5A7C528963AB655505AD12468

Abstract
Uvod in motivacija problema: Magnetnoresonančno (MR) slikanje omogoča neinvazivno merjenje anatomskih struktur ploda ter spremljanje njegove rasti in razvoja, tako zdravih kot patoloških struktur. Naprimer, ventrikulomegalija označuje povečanje širine v prečnem pogledu vsaj enega od obeh lateralnih ventriklov nad 10 mm ali več. Glede na širino ventriklov ločimo blage, zmerne in hude oblike ventrikulomegalije, pri čemer večja širina ventriklov prinaša slabšo poporodno prognozo. Diagnozo se običajno postavi na podlagi (ročnih) linearnih meritev. V magistrski nalogi predlagamo, da so avtomatsko pridobljene volumetrične meritve iz MR slik prav tako učinkovite za postavitev diagnoze. Podatki: Magistrska naloga obravnava dve podatkovni bazi: UKC in Kispi. Baza UKC vsebuje 2D sklade MR slik zdravih primerov in primerov različnih oblik ventrikulomegalije. Gestacijska starost v bazi se giblje med 22 in 36 tedni, povprečna starost pa je 30 tednov. Kispi baza je nastala v okviru FeTA izziva, ki se osredotoča na segmentacijo možganov ploda. Vključuje 80 3D MR slik v standardni anatomski poziciji, večina primerov je patoloških, specifična patologija pa ni navedena. Gestacijska starost tukaj se giblje med 20,1 in 34,8 tedni, povprečna starost je 26,9 tedna. Za vsak primer smo pridobili tudi ročne segmentacije 7-ih možganskih tkiv. Metode: Razvili smo večkoračni postopek, ki vključuje super-ločljivostno rekonstrukcijo 3D MR slik v standardni anatomski poziciji, avtomatsko segmentacijo možganov, volumetrične meritve, analizo rezultatov ter diagnostiko ventrikulomegalije. Rekonstrukcijo 3D MR slik v standardni anatomski poziciji na osnovi skladov 2D slik UKC baze smo opravili z algoritmom NiftyMIC. Za segmentacijo obeh podatkovnih baz smo uporabili CNN algoritem BOUNTI. Volumetrične meritve smo pridobili s štetjem označenih vokslov. S Kolmogorov-Smirnovim testom smo preverili uniformnost centilov meritev pri zdravih plodih, pri čemer smo centile določili glede na neodvisno referenčno populacijo zdravih plodov. Analizirali smo odvisnost volumetričnih meritev od gestacijske starosti. Pri diagnostiki smo želeli preveriti sposobnost razločevanja meritev na zdrave in patološke, za kar smo uporabili AUC vrednosti (razločevanje s posameznimi meritvami) in UMAP projekcijo (za skupino meritev). Uspešnost diagnostike smo analizirali z uporabo odločitvenih dreves, ki so enostavna za interpretacijo s stališča uporabljenih meritev in optimalnih pražnih vrednosti. Rezultati: Uspešnost rekonstrukcije 3D MR slik je bila odvisna od prisotnosti artefaktov v 2D slikah. Segmentacija je bila najslabša pri globoki sivi možganovini zaradi različnih definicij oz. predpostavk med algoritmom BOUNTI in referenčnimi segmentacijami, ter pri izrazito povečanih lateralnih ventriklih. Uniformno porazdelitev centilov meritev pri zdravih plodih smo dosegli pri UKC bazi za celoten volumen lateralnih ventriklov in levi ventrikel, pri Kispi bazi pa za belo možganovino, levi lateralni ventrikel in male možgane. Volumetrične meritve značilnic levega, desnega in skupnega volumna lateralnih ventriklov odstopajo od zdravih primerov. Meritve lateralnih ventriklov so dosegle največjo zmožnost razločevanja med zdravimi in patološkimi plodi v obeh bazah. UMAP projekcija je pokazala smiselnost uporabe centilov značilnic, pri katerih smo dokazali unformnost porazdelitve za zdravo populacijo. UMAP projekcija UKC baze dobro ločuje med zdravimi primeri in različnimi oblikami ventrikulomegalije, vendar ne more razlikovati med enostransko, asimetrično in simetrično obliko. Podatki Kispi baze se grupirajo v več gruč, vendar zaradi pomanjkanja specifičnih diagnoz ne moremo oceniti uspešnosti projekcije. UMAP prav tako razkriva možen vpliv algoritmov super-ločljivostne rekonstrukcije slik. Diagnoza z odločitvenim drevesom je dobro ločila med zdravimi in patološkimi primeri v obeh bazah, vendar se uspešnost razvrščanja zmanjša pri podrobnejših označbah primerov. Zaključek: Razmejitev podatkov z volumetričnimi meritvami je uspešna pri razlikovanju med zdravimi in patološkimi plodi. Uporaba meritev z uniformno porazdelitvijo pri zdravih plodih poda smiselno razvrščanje, dobro je tudi razvrščanje med hudo in zmerno/blago obliko ventrikulomegalije. Razvrščanje med enostransko, simetrično in asimetrično ventrikulomegalijo je dalo slabe rezultate, verjetno zaradi razmeroma majhnega števila primerov v posameznih kategorijah.

Language:Slovenian
Keywords:Plod, MR slikanje, Ventrikulomegalija, HASTE MRI tehnika, Super-ločljivostna rekonstrukcija skladov slik v volumen, Segmentacija, Volumetrične meritve, Percentili, Uniformna porazdelitev podatkov, AUC vrednosti, UMAP projekcija, Odločitveno drevo.
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-160225 This link opens in a new window
COBISS.SI-ID:207506435 This link opens in a new window
Publication date in RUL:23.08.2024
Views:254
Downloads:85
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Segmentation and volumetric analysis of fetal brain magnetic resonance scans
Abstract:
Introduction and Problem Motivation: Magnetic resonance (MR) imaging enables non-invasive measurements of anatomical structures in fetuses and monitoring its growth and development, thereby enabling early diagnosis of pathological conditions. For instance, ventriculomegaly refers to the enlargement of the lateral ventricles, which is diagnosed when the sagittal diameter of at least one lateral ventricle is 10 mm or more. Based on the width of the ventricles, we distinguish between mild, moderate, and severe forms of ventriculomegaly, with larger ventricular diameter associated with worse postnatal prognosis. The diagnosis is usually made based on manual linear measurements. In this master's thesis, we aim to establish automated volumetric measurements as effective for diagnostic purposes. Data: The master's thesis addresses two databases: UKC and Kispi. The UKC database contains 2D MR image stacks of healthy cases and cases of various forms of ventriculomegaly. The gestational age in the database ranges from 22 to 36 weeks, with an average age of 30 weeks. The Kispi database was created as part of the FeTA challenge, which focuses on fetal brain segmentation. The Kispi database includes 80 3D MR images in a standard anatomical position, most of which are pathological cases, though specific pathology is not specified. The gestational age here ranges from 20.1 to 34.8 weeks, with an average age of 26.9 weeks. For each case, we also obtained manual segmentations of 7 brain tissues. Methods: We developed a multi-step computational pipeline that includes super-resolution reconstruction of 3D MR images in a standard anatomical position, automatic brain segmentation, volumetric measurements, analysis of results, and models for diagnosis of ventriculomegaly. We performed the reconstruction of 3D MR images in a standard anatomical position based on 2D image stacks from the UKC database using the NiftyMIC algorithm. For the segmentation of both databases, we used the CNN algorithm dubbed BOUNTI. Volumetric measurements were obtained by counting labeled voxels. We checked the uniformity of centiles on healthy fetuses, which were obtained with respect to independent external reference database, with the Kolmogorov-Smirnov test. We analyzed the course of volumetric measurements in relation to gestational age. In the diagnosis, we aimed to test the ability to differentiate measurements between healthy and pathological cases, using AUC values (for individual measurements) and UMAP projection (for groups of measurements). We analyzed the diagnostic performance using easily interpretable decision trees, reflecting the choice of measurements and associated threshold values. Results: The success of 3D MR image reconstruction depended on the presence of artifacts in the 2D images. Segmentation was poorest in deep gray matter due to different definitions or assumptions between the BOUNTI algorithm and reference segmentations, and in extremely enlarged lateral ventricles. A uniform distribution of measurement centiles on healthy cases was achieved in the UKC database for the entire volume of lateral ventricles and the left ventricle, while in the Kispi database, it was achieved for white matter, the left lateral ventricle, and the cerebellum. Volumetric measurements of the left, right, and total volume of lateral ventricles deviated from healthy cases. Lateral ventricles achieved the highest differentiation capability between healthy and pathological cases in both databases. UMAP projection demonstrated the good differentiation capability of the uniform feature centiles. The UKC database projection effectively differentiated between healthy cases and various forms of ventriculomegaly, but could not distinguish between unilateral, asymmetric, and symmetric forms. The data from the Kispi database clustered into several groups, but due to the lack of specific diagnoses, we could not assess the effectiveness of the projection. UMAP also reveals the possible impact of super-resolution image reconstruction algorithms. Diagnosis with the decision tree effectively differentiated between healthy and pathological cases in both databases, but the classification performance decreased with more detailed case labeling. Conclusion: Differentiation of volumetric fetal measurement was very good at distinguishing between healthy and pathological cases. The use of uniform feature centiles yielded meaningful results, with improved differentiation between severe versus moderate and mild forms of ventriculomegaly. However, categorizing pathologies based on whether ventriculomegaly is unilateral, symmetric, or asymmetric achieved poor results, mainly due to the lack of cases in specific categories.

Keywords:Fetus, MR imaging, Ventriculomegaly, HASTE MRI technique, Super-resolution reconstruction of slice stacks into volume, Segmentation, Volumetric measurements, Percentiles, Uniform data distribution, AUC values, UMAP projection, Decision tree.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back