Details

Vpeljava obstoječega znanja v podatkovno vodene pristope modeliranja dinamskih sistemov
ID Anko, Matej (Author), ID Slavič, Janko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,07 MB)
MD5: 3506054F7C562A7D432EE7FF5F382379

Abstract
Pri razumevanju in reševanju dinamskih sistemov si lahko pomagamo z različnimi meritvami in podatkovno vodenimi pristopi, kot so metode strojnega učenja. Pogosto imamo o obravnavanem problemu že nekaj predhodnega znanja, ki ga lahko vključimo v proces strojnega učenja na več različnih načinov. Na primeru balansiranja togih rotorjev, si bomo pogledali več možnih načinov vpeljave predhodnega znanja za napoved lokacije in mase, potrebne za zmanjšanje masne neuravnoteženosti. S pomočjo knjižnice Tensorflow bomo izdelali več modelov in jih ocenili glede na definirane kriterije.

Language:Slovenian
Keywords:strojno učenje, podatkovno vodeni pristopi, dinamski sistemi, fizikalno obogateno strojno učenje, balansiranje togih rotorjev, tensorflow
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Year:2024
Number of pages:XXII, 84 str.
PID:20.500.12556/RUL-160196 This link opens in a new window
UDC:531/534:004:004.85(043.2)
COBISS.SI-ID:218525443 This link opens in a new window
Publication date in RUL:23.08.2024
Views:410
Downloads:124
Metadata:XML DC-XML DC-RDF
:
ANKO, Matej, 2024, Vpeljava obstoječega znanja v podatkovno vodene pristope modeliranja dinamskih sistemov [online]. Master’s thesis. [Accessed 5 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=160196
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Introduction of existing knowledge in data-driven approaches of modeling dynamical systems
Abstract:
We can use different measurements and data-driven approaches, such as machine learning methods in understanding and solving dynamical systems. Often, we already have some prior knowledge about the problem at hand, which we can incorporate into the machine learning process in several different ways. Using the example of balancing of rigid rotors, we will look at several possible ways of introducing prior knowledge to predict the location and mass needed to reduce mass imbalance. With the help of the TensorFlow library, we will create multiple models and evaluate them based on defined criteria.

Keywords:machine learning, data-driven approaches, dynamical systems, physics informed machine learning, balancing of rigid rotors, tensorflow

Similar documents

Similar works from RUL:
  1. Cycling in hypercubes
  2. Critical graphs
  3. Fullerenes
  4. Self-complementary graphs
  5. Sprouts - a combinatorial game
Similar works from other Slovenian collections:
  1. Many distances in planar graphs
  2. Hinz, Andreas M.; Parisse, Daniele: On the planarity of Hanoi graphs. - Expo. Math. 20 (2002), no. 3, 263-268
  3. Domination in graphs and planar graphs for the primary and secondary school classroom
  4. A charaterization of planar partial cubes
  5. Brešar, Boštjan: Partial Hamming graphs and expansion procedures. - Discrete Math. 237 (2001), no. 1-3, 13-27

Back