izpis_h1_title_alt

Risanje theta krivulj s pakiranjem krogov
ID LASAN, JONAS (Author), ID Virk, Žiga (Mentor) More about this mentor... This link opens in a new window, ID Gabrovšek, Boštjan (Comentor)

.pdfPDF - Presentation file, Download (3,13 MB)
MD5: 99C85B474D0EA8C07DCD5494D577A47F

Abstract
Pakiranje krogov se pogosto uporablja kot ogrodje za risanje vozelnih diagramov. V diplomskem delu je postopek izrisovanja vozelnih diagramov posplošen na izrisovanje diagramov theta krivulj. Opisano je kodiranje ravninskih diagramov vozlov in posplošeno kodiranje theta krivulj. Opisan in implementiran je posplošen postopek pretvorbe PD-kode diagrama theta krivulje v izvorni diagram. Algoritem je razdeljen na tri ključne sklope. Prvi sklop zajema razčlenjevanje PD-kode in predstavitev posameznih delov izvornega diagrama in njihovih relacij z abstraktnim grafom. Drugi sklop zajema predstavitev delov diagrama in njihovih relacij v ravnini s pakiranjem krogov. Tretji sklop zajema izrisovanje krožnih lokov znotraj pakiranja, ki skupaj tvorijo končno risbo diagrama. Algoritem je implementiran v Pythonu in je uporabljen za izris ravninskih diagramov theta krivulj z do sedmimi križišči.

Language:Slovenian
Keywords:theta krivulja, ravninski diagram, pakiranje krogov
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-160163 This link opens in a new window
COBISS.SI-ID:206795267 This link opens in a new window
Publication date in RUL:22.08.2024
Views:181
Downloads:64
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Drawing theta curves using circle packing
Abstract:
Circle packings are often used as a framework for drawing knot diagrams. In this thesis, the process of drawing knot diagrams is generalized to drawing theta curve diagrams. Planar diagram encodings of knots are described and generalized for theta curve diagrams. A generalized procedure for converting the PD-code of a theta curve diagram into the original diagram is described and implemented. The algorithm is divided into three key components. The first component involves parsing the PD-code and representing individual parts of the original diagram and their relations as an abstract graph. The second component involves representing parts of the diagram and their relations in the plane with circle packing. The third component involves drawing circular arcs within the packing, which together form the final diagram. The algorithm is implemented in Python and is used to draw planar diagrams of theta curves with up to seven crossings.

Keywords:theta curve, planar diagram, circle packing

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back