Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Adaptive data-driven subsampling for efficient neural network inference
ID
Machidon, Alina Luminita
(
Avtor
),
ID
Pejović, Veljko
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(741,96 KB)
MD5: 6C3992C941A19E9B1F2DDB3396C75DBE
URL - Izvorni URL, za dostop obiščite
https://link.springer.com/article/10.1007/s11760-024-03223-z
Galerija slik
Izvleček
In this paper we present a novel data-driven subsampling method that can be seamlessly integrated into any neural network architecture to identify the most informative subset of samples within the original acquisition domain for a variety of tasks that rely on deep learning inference from sampled signals. In contrast to existing methods that require signal transformation into a sparse basis, expensive signal reconstruction as an intermediate step, and that can support a single predefined sampling rate only, our approach allows the sampling inference pipeline to adapt to multiple sampling rates directly in the original signal domain. The key innovations enabling such operation are a custom subsampling layer and a novel training mechanism. Through extensive experiments with four data sets and four different network architectures, our method demonstrates a simple yet powerful sampling strategy that allows the given network to be efficiently utilized at any given sampling rate, while the inference accuracy degrades smoothly and gradually as the sampling rate is reduced. Experimental comparison with state-of-the-art sparse sensing and learning techniques demonstrates competitive inference accuracy at different sampling rates, coupled with a significant improvement in computational efficiency, and the crucial ability to operate at arbitrary sampling rates without the need for retraining.
Jezik:
Angleški jezik
Ključne besede:
nonuniform sampling
,
compressive sensing
,
deep learning
,
EEG classification
,
speech recognition
,
image classification
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
Str. 5163-5171
Številčenje:
Vol. 18, iss. 6/7
PID:
20.500.12556/RUL-159774
UDK:
004
ISSN pri članku:
1863-1703
DOI:
10.1007/s11760-024-03223-z
COBISS.SI-ID:
199953155
Datum objave v RUL:
24.07.2024
Število ogledov:
327
Število prenosov:
55
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Signal, image and video processing
Založnik:
Springer Nature
ISSN:
1863-1703
COBISS.SI-ID:
13373718
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
neenakomerno vzorčenje
,
kompresijsko zaznavanje
,
globoko učenje
,
klasifikacija EEG
,
prepoznavanje govora
,
klasifikacija slike
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj