izpis_h1_title_alt

Vpliv motene sinteze holesterola v jetrnih celicah na signalizacijo prek jedrnega receptorja RORC in na cirkadiano uro
ID Skubic, Cene (Author), ID Rozman, Damjana (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (11,06 MB)
MD5: 7C7BD0AA1C98355C470215E88F632220

Abstract
Holesterol je esencialna molekula, glavni sterol v vseh celicah sesalcev in eden od ključnih komponent celičnih membran. Določa strukturne in funkcionalne parametre membran in je tudi sestavni del lipidnih raftov. Je predhodnik steroidnih hormonov, žolčnih kislin in oksidiranih oblik holesterola. Sinteza holesterola je proces, aktiven v vseh tkivih, najbolj v jetrih in je natančno uravnan na več ravneh, motnje v sintezi pa vodijo v številna patološka stanja. Vključuje več kot 20 reakcij, pri katerih sodelujejo številni encimi. V poskvalenskem delu se sinteza začne z lanosterolom, iz katerega nato v vsaj 11 encimskih reakcijah nastane holesterol. Po pretvorbi lanosterola se sinteza razdeli na dve predpostavljeni sintezni poti; Bloch-ovo in Kandutsch-Russell-ovo, v katerih je vsaj 19 različnih sterolnih molekul. Znano je, da ima imajo steroli tudi druge funkcije, ki niso neposredno povezane s sintezo holesterola. Intermediati iz sinteze holesterola lahko delujejo kot ligandi jedrnega receptorja RORC, ki uravnava transkripcijo tarčnih genov z vezavo na DNA promotorska zaporedja RORE. Ni še pojasnjeno, kateri steroli so fiziološki ligandi RORC v različnih tipih celic in kako preko sterolov aktivirana signalizacija RORC vpliva na cirkadiano uro v jetrih in posledično na presnovne procese, povezane s cirkadiano uro. Cirkadiana ura je transkripcijsko-translacijski mehanizem, s katerim je uravnan 24 urni ritem v organizmih. Na genetski ravni so za to zadolženi osrednji geni in proteini cirkadiane ure, CLOCK, BMAL1, PER in CRY. Znano je, da se cirkadiano izražanje genov na sekundarni ravni uravnava tudi preko transkripcijskih faktorjev ROR, ki de/aktivirajo prepisovanje cirkadianih genov preko vezave na RORE. V doktorski nalogi smo pozornost posvetili sterolom, ki se v sintezni poti holesterola nahajajo med lanosterolom in holesterolom. Cilj je bil opredeliti njihovo vlogo v različnih celičnih signalizacijah in tudi kot možnih ligandov jedrnega receptorja RORC v jetrnih celicah. S tem namenom smo pripravili celične linije HepG2 z izbitimi geni iz sinteze holesterola in posledično obogatenimi določenimi steroli. Cilj je bil tudi vzpostaviti metodologijo za detekcijo in kvantifikacijo sterolov. S pomočjo metode CRISPR-Cas9 smo spremenili zaporedje DNA v tarčnih genih CYP51A1, DHCR24, SC5D in HSD17B7, s čimer smo prekinili sintezo holesterola na različnih stopnjah. Z novo razvito metodo LC-MS, ki omogoča opredelitev in kvantifikacijo 11 nepolarnih sterolnih intermediatov iz sinteze holesterola, smo pokazali, da nobeden od tarčnih encimov ni več funkcionalen. Steroli po encimskem koraku, ki je bil izničen, niso bili več prisotni v celicah, medtem ko so se prekurzorski steroli nabirali v visokih koncentracijah. Kopičenje sterolov je vplivalo na diferenčno izražanje genov, pri čemer se je večina poti spremenila v samo eni celični liniji z izbitim genom. To nakazuje na specifične mehanizme, v katere so vključeni posamezni steroli. Analiza obogatenih metabolnih poti, genov in transktipcijskih faktorjev je pokazala številne statistično značilno spremenjene poti, med katerimi pa ni bilo RORC, niti poti, v katere je RORC vpleten. Meritev genov pod kontrolo RORC z RT-qPCR in z mikromrežami ni pokazala pričakovanih razlik v izražanju tarčnih genov v HepG2 celičnem modelu. Po prekomernem izražanju RORC v celičnih linijah in imunoprecipitaciji frakcije RORC sterolov, ki bi bili specifično vezani na RORC, nismo uspeli opredeliti. Predhodne in vitro študije, ki so pokazale, da steroli lahko aktivirajo signalizacijo RORC, so bile izvedene na transkripcijski različici RORC2, v jetrih in tudi celicah HepG2, pa se izraža RORC1, pri kateri predhodnih rezultatov nismo potrdili. Razlog za to je lahko spremenjena aminokislinska razlika med obema različicama RORC. Naši rezultati kažejo na pomembnost upoštevanja transkripcijskih variant in tkivne specifičnosti pri študijah signalizacije preko RORC. Pokazali pa smo vlogo sterolov v signalizaciji NFKB/WNT preko proteina LEF1. Pokazali smo, da zgodnji steroli, kot je 24,25-dihidrolanosterol pospešujejo proliferacijo celic in spremembe v celičnem ciklu. Študije cirkadianega izražanja genov v celicah HepG2 so pokazale, da imajo te celice nizko osnovno oscilacijo izražanja genov. Opredelili smo spremembe v izražanju nekaterih genov osrednje cirkadiane ure v celicah z izbitimi geni sinteze holesterola v primerjavi s kontrolnimi celicami. Rezultati kažejo spremenjeno oscilacijo genov BMAL1 in CRY1 in zamik faze gena PER2, česar pa ne moremo pripisati spremenjeni signalizaciji RORC. Najverjetneje gre za vpliv drugih signalnih poti, kot sta WNT in NF-KB, ter spremembe v celičnem ciklu. Naše ugotovitve kažejo, da steroli iz sinteze holesterola nadzirajo različne signalne poti v HepG2 in da le zgodnji steroli spodbujajo celično proliferacijo.

Language:Slovenian
Keywords:holesterol, steroli, RORC, HepG2, CRISPR-Cas9, sinteza holesterola, cirkadiana ura, CYP51A1, DHCR24, SC5D, HSD17B7
Work type:Doctoral dissertation
Organization:MF - Faculty of Medicine
Year:2023
PID:20.500.12556/RUL-159687 This link opens in a new window
Publication date in RUL:18.07.2024
Views:196
Downloads:43
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The impact of disturbed cholesterol synthesis on RORC nuclear receptor signalling and on the circadian clock in liver cells
Abstract:
Cholesterol is the main sterol in all mammalian cells and is one of the key components that make up cell membranes, determining the structural and functional parameters of the membrane, which is important for cell survival. Cholesterol is a precursor for steroid hormones, bile acids, and oxidized forms of cholesterol. Its roles include interactions with proteins and involvement in various signalling pathways, such as the regulation of the cell cycle. Cholesterol synthesis is a process precisely regulated at multiple stages, and disruptions in this process are consequently linked to numerous pathological conditions. Cholesterol synthesis is active in all tissues, especially in the liver, which is also responsible for maintaining cholesterol balance in the body. The synthesis of cholesterol is a complex process involving multiple reactions and numerous enzymes. In the post-squalene part, synthesis begins with lanosterol, which is then converted into cholesterol through at least 11 enzymatic reactions. After the conversion of lanosterol, cholesterol synthesis is divided into two proposed pathways: the Bloch pathway and the Kandutsch-Russell pathway, which together involve at least 19 different sterol molecules. It is known that several sterols have other functions unrelated to cholesterol synthesis. One of the more important functions is that cholesterol intermediates can act as ligands for the RORC nuclear receptor, which regulates the transcription of target genes by binding to RORE in DNA promoters. It is not yet clear which sterols serve as physiological ligands for RORC in different cell types and how RORC-activated signalling via sterols affects the circadian clock in the liver and consequently, how it affects metabolic processes associated with the circadian clock. The circadian clock is a transcriptional-translational mechanism that regulates the 24-hour rhythm in organisms. At the genetic level, clock is regulated by genes and proteins of the circadian clock, such as CLOCK, BMAL1, PER and CRY gene families. It is known that the circadian expression of genes at the secondary level is also regulated by transcription factors ROR and RevErb, which activate or deactivate the transcription of circadian genes by binding to RORE. In doctoral thesis, we focused on sterols that are found in the cholesterol synthesis pathway between lanosterol and cholesterol. The aim was to identify their role as potential ligands for the nuclear receptor RORC in liver cells. To achieve this, we prepared HepG2 cell lines with KO genes involved in cholesterol synthesis, resulting in the enrichment of specific sterols. Additional goal was to establish a methodology for the detection and quantification of sterols. Using the CRISPR-Cas9 method, we modified the DNA sequence of the CYP51A1, DHCR24, SC5D and HSD17B7 target genes, thereby disrupting cholesterol synthesis at various stages. With the newly developed LC-MS method, which allows for the identification and quantification of 11 nonpolar sterol intermediates from cholesterol synthesis, we demonstrated that none of the target enzymes were functional. Sterols, usually produced after the enzymatic step, were no longer present in the cells, while precursor sterols accumulated in high concentrations. The accumulation of sterols affected the differential expression of genes, with most pathways being altered in a single KO, indicating specific mechanisms involving individual sterols. Analysis of enriched metabolic pathways, genes, and transcription factors revealed numerous statistically significant altered pathways, but not RORC signalling or pathways connected to RORC signalling. Measurement of genes under RORC control using RT-qPCR and microarrays, did not show the expected differences in the expression of target genes. Successful overexpression of RORC in cell lines and immunoprecipitation of the RORC fraction were achieved, but we were unable to identify sterols specifically bound to RORC from the immunoprecipitate. However, we demonstrated the role of sterols in NFKB/WNT signalling via the LEF1 protein and we have shown that early sterols such as 24,25-dihydrolanosterol promote cell proliferation and changes in the cell cycle. Studies on the circadian expression of genes in HepG2 cells showed that these cells had a low basal oscillation of gene expression. We identified changes in the expression of certain central circadian clock genes in cells with KO genes involved in cholesterol synthesis, compared to control cells. The results indicated altered oscillation of BMAL1 and CRY1 genes and a phase shift in the PER2 gene, but we cannot attribute this to altered RORC signalling. It is most likely influenced by other signalling pathways, such as WNT and NF-KB, as well as changes in the cell cycle, which have already been shown to affect the expression of circadian genes. Our findings suggest that sterols from cholesterol synthesis control various signalling pathways, and only early sterols stimulate cell proliferation

Keywords:cholesterol, sterols, RORC, HepG2, CRISPR-Cas9, cholesterol synthesis, circadian clock, CYP51A1, DHCR24, SC5D, HSD17B7

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back