izpis_h1_title_alt

Embedded complex curves in the affine plane
ID Alarcón, Antonio (Author), ID Forstnerič, Franc (Author)

.pdfPDF - Presentation file, Download (565,28 KB)
MD5: 69F4E970CD0613D26363B734B56604E1
URLURL - Source URL, Visit https://link.springer.com/article/10.1007/s10231-023-01418-8 This link opens in a new window

Abstract
This paper brings several contributions to the classical Forster-Bell-Narasimhan conjecture and the Yang problem concerning the existence of proper and almost proper (hence complete) injective holomorphic immersions of open Riemann surfaces in the affine plane ${\mathbb C}^2$ satisfying interpolation and hitting conditions. We also show that in every compact Riemann surface there is a Cantor set whose complement admits a proper holomorphic embedding in ${\mathbb C}^2$. The focal point is a lemma saying the following. Given a compact bordered Riemann surface, $M$, a closed discrete subset $E$ of its interior ${\mathring M}=M\setminus bM$, a compact subset $K\subset {\mathring M}\setminus E$ without holes in $\mathring M$, and a ${\cal C}^1$ embedding $f: M\hookrightarrow \mathbb C^2$ which is holomorphic in $\mathring M$, we can approximate $f$ uniformly on $K$ by a holomorphic embedding $F: bM\hookrightarrow {\mathbb C}^2$ which maps $E\cup bM$ out of a given ball and satisfies some interpolation conditions.

Language:English
Keywords:Riemann surfaces, complex curves, complete holomorphic embedding
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication version:Version of Record
Publication date:01.08.2024
Year:2024
Number of pages:Str. 1673-1701
Numbering:Vol. 203, iss. 4
PID:20.500.12556/RUL-159621 This link opens in a new window
UDC:517.5
ISSN on article:0373-3114
DOI:10.1007/s10231-023-01418-8 This link opens in a new window
COBISS.SI-ID:182950147 This link opens in a new window
Publication date in RUL:15.07.2024
Views:207
Downloads:30
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Annali di matematica pura ed applicata
Shortened title:Ann. mat. pura appl.
Publisher:Springer
ISSN:0373-3114
COBISS.SI-ID:24962816 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:Riemannove ploskve, kompleksne krivulje, kompletna holomorfna vložitev

Projects

Funder:Other - Other funder or multiple funders
Funding programme:Spain, State Research Agency (AEI)
Project number:PID2020-117868GB-I00

Funder:Other - Other funder or multiple funders
Funding programme:“Maria de Maeztu” Excellence Unit IMAG
Project number:CEX2020-001105-M

Funder:Other - Other funder or multiple funders
Funding programme:Junta de Andalucía
Project number:P18-FR-4049

Funder:EC - European Commission
Project number:101053085
Name:Holomorphic Partial Differential Relations
Acronym:HPDR

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0291
Name:Analiza in geometrija

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-3005
Name:Kompleksna in geometrijska analiza

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0237
Name:Holomorfne parcialne diferencialne relacije

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back