izpis_h1_title_alt

Frobeniusove algebre in (1+1)-razsežne topološke kvantne teorije polja : delo diplomskega seminarja
ID Matevc, Andrej (Author), ID Strle, Sašo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (767,75 KB)
MD5: CD4EED6658006B15EFB64031E406C97E

Abstract
V delu najprej predstavimo nekatere pojme iz teorije kategorij. Definiramo monoidalne kategorije, funktorje, naravne transformacije, monoide in komonoide ter na monoidalne kategorije uvedemo simetrično strukturo. Nato dokažemo izrek o univerzalnosti monoidalne kategorije končnih ordinalov. V nadaljevanju se seznanimo s pojmom kobordizma med orientiranima mnogoterostma in tvorimo kategorijo n-koborizmov, ki jo opremimo s strukturo simetrične monoidalne kategorije. Določimo še generatorje monoidalne kategorije 2-kobordizmov in najdemo zadostno zbirko relacij. Nadaljujemo obravnavo monoidalnih kategorij, kjer definiramo parjenje in Frobeniusov objekt, nato pa Frobeniusovo lastnost karakteriziramo s parjenjem. Dokažemo izrek o univerzalnosti simetrične monoidalne kategorije 2-koboridzmov in si pogledamo posebni primer tega izreka za vektorske prostore. Definiramo topološke kvantne teorije polja in Frobeniusove algebre ter natančneje opišemo pojem neizrojenega parjenja v kategoriji vektorskih prostorov. Nazadnje si ogledamo še nekaj zgledov topoloških kvantnih teorij polja.

Language:Slovenian
Keywords:monoidalna kategorija, monoidalni funktor, monoidalna naravna transformacija, simetrična struktura, monoid, komonoid, Frobeniusov objekt, mnogoterost, orientacija, kobordizem, univerzalna lastnost, Frobeniusova algebra, topološka kvantna teorija polj
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-159616 This link opens in a new window
UDC:515.1
COBISS.SI-ID:201851139 This link opens in a new window
Publication date in RUL:14.07.2024
Views:350
Downloads:37
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Frobenius algebras and (1+1)-dimensional topological quantum field theories
Abstract:
We first introduce some concepts in category theory, defining monoidal categories, functors, natural transformations, monoids, and comonoids. We also equip monoidal categories with symmetric structure. Then, we prove a theorem describing the universality of the monoidal category of finite ordinals. Next, we define cobordisms between oriented manifolds and construct the symmetric monoidal category of n-cobordisms. We determine the generators of the category of 2-cobordisms and find a sufficient set of relations. Continuing with our treatment of monoidal categories, we define pairings and Frobenius objects. We then characterize the Frobenius property with pairings. Using this, we prove the theorem that describes the universality of the symmetric monoidal category of 2-cobordisms. We consider a special case of this theorem for the category of vector spaces. We define topological quantum field theories and Frobenius algebras, and then provide a more specific description of non-degenerate pairings. Finally, we explore some examples of topological quantum field theories.

Keywords:monoidal category, monoidal functor, monoidal natural transformation, symmetric structure, monoid, comonoid, Frobenius object, manifold, orientation, cobordism, universal property, Frobenius algebra, topological quantum field theory

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back