Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Zlepki treh spremenljivk nad tetraedrsko particijo območja : magistrsko delo
ID
Šenica, Ana
(
Author
),
ID
Knez, Marjetka
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(2,67 MB)
MD5: 687519A0467D61BC479A615F1D8EB4F5
Image galllery
Abstract
V magistrski nalogi si ogledamo lokalno konstrukcijo polinomskih zlepkov treh spremenljivk nad poljubno tetraedrsko particijo
△
. Pri tem uporabimo reprezentacijo polinomov treh spremenljivk stopnje
n
nad posameznim tetraedrom
T
∈
△
v Bernsteinovi bazi in jo povežemo z množico domenskih točk
D
n
,
T
. Ogledamo si učinkovit in stabilen izračun odvodov polinomov v ogliščih, na robovih, na ploskvah in v notranjosti tetraedrov s pomočjo De Casteljaujevega algoritma in razcveta. Na koncu vpeljemo tri konkretne prostore
C
1
superzlepkov nad tetraedrsko particijo
△
, njeno Alfeldovo drobitvijo
△
A
in Worsey-Farinovo drobitvijo
△
W
F
, poiščemo njihove minimalne nodalne določitvene množice
N
,
N
A
in
N
W
F
ter s tem pokažemo, da gre za prostore
C
1
polinomskih makroelementov. Z njihovo pomočjo nato poiščemo rešitve Hermitovega interpolacijskega problema, določenega z
N
,
N
A
oziroma
N
W
F
.
Language:
Slovenian
Keywords:
zlepki treh spremenljivk
,
makroelement
,
tetraedrska particija
,
Bernsteinov bazni polinom
,
De Casteljaujev algoritem
,
razcvet
,
minimalna določitvena množica
,
minimalna nodalna določitvena množica
,
Alfeldov razcep
,
Worsey-Farinov razcep
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2024
PID:
20.500.12556/RUL-159278
UDC:
519.6
COBISS.SI-ID:
200587779
Publication date in RUL:
05.07.2024
Views:
538
Downloads:
133
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ŠENICA, Ana, 2024,
Zlepki treh spremenljivk nad tetraedrsko particijo območja : magistrsko delo
[online]. Master’s thesis. [Accessed 14 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=159278
Copy citation
Share:
Secondary language
Language:
English
Title:
Trivariate splines on tetrahedral partition
Abstract:
In the master's thesis we consider local construction of polynomial trivariate splines over a tetrahedral partition
△
. For the representation of trivariate polynomials of degree
n
over a tetrahedron
T
we use the Bernstein basis and connect it to its set of domain points
D
n
,
T
. We take a look at efficient and stable computation of derivatives at the vertices, on the edges, on the faces and in the interior of tetrahedra using De Casteljau algorithm and polynomial blossoms. We further introduce three
C
1
superspline spaces over tetrahedral partition
△
, its Alfeld refinement
△
A
and Worsey-Farin refinement
△
W
F
and find their nodal minimal determining sets
N
,
N
A
and
N
W
F
. Consequently, these spaces are indeed
C
1
macroelement spaces. They are used for finding the solutions of Hermite interpolation problems defined by
N
,
N
A
and
N
W
F
.
Keywords:
trivariate splines
,
macroelement
,
tetrahedral partition
,
Bernstein basis polynomial
,
De Casteljau algorithm
,
blossom
,
minimal determining set
,
nodal minimal determining set
,
Alfeld split
,
Worsey-Farin split
Similar documents
Similar works from RUL:
Bivariate splines
Interpolation over triangular domain
Spherical splines
Computing the intersection of planar Bézier curves
Pythagorean-Hodograph curves and interpolation
Similar works from other Slovenian collections:
Interpolacija s krivuljami B-zlepkov in Hermitova interpolacija
Rational Bézier curves
Uporaba degradirane DNA pri taksonomskem določanju s pomočjo sistema črtnih kod
Sprememba predstavitev krivulj in ploskev, ki ohranjajo njihove oblike
Linear separation of connected dominating sets in graphs
Back