Details

Zlepki treh spremenljivk nad tetraedrsko particijo območja : magistrsko delo
ID Šenica, Ana (Author), ID Knez, Marjetka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,67 MB)
MD5: 687519A0467D61BC479A615F1D8EB4F5

Abstract
V magistrski nalogi si ogledamo lokalno konstrukcijo polinomskih zlepkov treh spremenljivk nad poljubno tetraedrsko particijo . Pri tem uporabimo reprezentacijo polinomov treh spremenljivk stopnje n nad posameznim tetraedrom T v Bernsteinovi bazi in jo povežemo z množico domenskih točk Dn,T. Ogledamo si učinkovit in stabilen izračun odvodov polinomov v ogliščih, na robovih, na ploskvah in v notranjosti tetraedrov s pomočjo De Casteljaujevega algoritma in razcveta. Na koncu vpeljemo tri konkretne prostore C1 superzlepkov nad tetraedrsko particijo , njeno Alfeldovo drobitvijo A in Worsey-Farinovo drobitvijo WF, poiščemo njihove minimalne nodalne določitvene množice N, NA in NWF ter s tem pokažemo, da gre za prostore C1 polinomskih makroelementov. Z njihovo pomočjo nato poiščemo rešitve Hermitovega interpolacijskega problema, določenega z N, NA oziroma NWF.

Language:Slovenian
Keywords:zlepki treh spremenljivk, makroelement, tetraedrska particija, Bernsteinov bazni polinom, De Casteljaujev algoritem, razcvet, minimalna določitvena množica, minimalna nodalna določitvena množica, Alfeldov razcep, Worsey-Farinov razcep
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-159278 This link opens in a new window
UDC:519.6
COBISS.SI-ID:200587779 This link opens in a new window
Publication date in RUL:05.07.2024
Views:538
Downloads:133
Metadata:XML DC-XML DC-RDF
:
ŠENICA, Ana, 2024, Zlepki treh spremenljivk nad tetraedrsko particijo območja : magistrsko delo [online]. Master’s thesis. [Accessed 14 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=159278
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Trivariate splines on tetrahedral partition
Abstract:
In the master's thesis we consider local construction of polynomial trivariate splines over a tetrahedral partition . For the representation of trivariate polynomials of degree n over a tetrahedron T we use the Bernstein basis and connect it to its set of domain points Dn,T. We take a look at efficient and stable computation of derivatives at the vertices, on the edges, on the faces and in the interior of tetrahedra using De Casteljau algorithm and polynomial blossoms. We further introduce three C1 superspline spaces over tetrahedral partition , its Alfeld refinement A and Worsey-Farin refinement WF and find their nodal minimal determining sets N, NA and NWF. Consequently, these spaces are indeed C1 macroelement spaces. They are used for finding the solutions of Hermite interpolation problems defined by N, NA and NWF.

Keywords:trivariate splines, macroelement, tetrahedral partition, Bernstein basis polynomial, De Casteljau algorithm, blossom, minimal determining set, nodal minimal determining set, Alfeld split, Worsey-Farin split

Similar documents

Similar works from RUL:
  1. Bivariate splines
  2. Interpolation over triangular domain
  3. Spherical splines
  4. Computing the intersection of planar Bézier curves
  5. Pythagorean-Hodograph curves and interpolation
Similar works from other Slovenian collections:
  1. Interpolacija s krivuljami B-zlepkov in Hermitova interpolacija
  2. Rational Bézier curves
  3. Uporaba degradirane DNA pri taksonomskem določanju s pomočjo sistema črtnih kod
  4. Sprememba predstavitev krivulj in ploskev, ki ohranjajo njihove oblike
  5. Linear separation of connected dominating sets in graphs

Back