izpis_h1_title_alt

Sylvestrovo zaporedje : magistrsko delo
ID Narat, Tina (Author), ID Horvat, Eva (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (534,61 KB)
MD5: EE4213E7468D3EF4769A8572EC272FAB

Abstract
V tem magistrskem delu predstavimo Sylvestrovo zaporedje. Sylvestrovo zaporedje je zaporedje naravnih števil, v katerem je vsak naslednji člen produkt predhodnih členov, povečan za ena. Osredotočimo se na njegove lastnosti in jih tudi dokažemo. Predstavimo še nerešen problem v povezavi s Sylvestrovim zaporedjem. V nadaljevanju obravnavamo zaporedje obratnih vrednosti členov Sylvestrovega zaporedja, ki tvorijo številsko vrsto. Raziščemo povezavo med to številsko vrsto in egipčanskimi ulomki. Predstavimo tudi diofantsko enačbo, katere rešitve so navzgor omejene s členi Sylvestrovega zaporedja, zmanjšanimi za 1, ki jo povežemo še z dvema matematičnima problemoma. V zadnjem poglavju obravnavane teme združimo v zbirko nalog, ki jih učitelji matematike lahko uporabijo pri pripravah na matematično tekmovanje za Vegovo priznanje za srednje šole ali pri dodatnem pouku matematike v srednji šoli.

Language:Slovenian
Keywords:Sylvestrovo zaporedje, egipčanski ulomki, praštevila, diofantska enačba, matematika
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Place of publishing:Kamnik
Publisher:T. Narat
Year:2024
Number of pages:59 str.
PID:20.500.12556/RUL-159247 This link opens in a new window
UDC:511(043.2)
COBISS.SI-ID:200829187 This link opens in a new window
Publication date in RUL:04.07.2024
Views:222
Downloads:62
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Sylvester's Sequence
Abstract:
In this master's thesis, we present Sylvester's sequence. Sylvester's sequence is a sequence of natural numbers in which each subsequent term is the product of all previous terms, increased by one. We focus on properties of this sequence and provide their proofs. We also present an unsolved problem related to the Sylvester's sequence. Furthermore, we examine the sequence of the reciprocals of the terms of the Sylvester's sequence, which form a series. We explore the connection between the terms of this series and Egyptian fractions. We also present a diophantine equation, whose solutions are bounded above by the terms of the Sylvester's sequence, reduced by one, and relate it to two separate mathematical problems. In the final chapter, we combine the topics previously discussed into a collection of problems that teachers of mathematics can use to prepare high school students for the Vega Prize mathematics competition or for additional mathematics classes in high school.

Keywords:Sylvester's sequence, Egyptian fractions, prime numbers, diophantine equation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back