izpis_h1_title_alt

Geometrijske konstrukcije z ravnilom in Poncelet-Steinerjev izrek : magistrsko delo
ID Žakelj, Tina (Author), ID Horvat, Eva (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,13 MB)
MD5: 940D44C6D929448324F59AA8AD4E2FBB

Abstract
V magistrskem delu najprej predstavimo lastnosti standardnih geometrijskih konstrukcij z ravnilom in šestilom. Postavimo analitični kriterij za konstruktibilnost in opišemo način pridobivanja novih konstruktibilnih geometrijskih objektov s pomočjo že obstoječih. Nato množico konstruktibilnih števil opišemo kot evklidsko polje. Z naslednjim poglavjem preidemo na nestandardne geometrijske konstrukcije z ravnilom. S trditvijo o trapezu in njeno posledico si olajšamo delo v nadaljevanju, saj nam omogočata konstrukcijo razpolovišč daljice na vzporednih premicah ter konstrukcijo vzporednic, ki potekajo skozi razpolovišča daljic. V nadaljevanju vpeljemo nov izraz r-konstruktibilnost, ki pomeni konstruktibilnost le z uporabo ravnila. Dokažemo, da množica r-konstruktibilnih števil predstavlja natanko polje racionalnih števil. V tretjem poglavju opišemo geometrijske konstrukcije z uporabo ravnila in navtičnega šestila, ki ga uporabljamo za prenašanje razdalj. Za konstruktibilnost z ravnilom in navtičnim šestilom uporabimo izraz rn-konstruktibilnost. Poleg konstrukcij z ravnilom in navtičnim šestilom opišemo še konstrukcije s podobnimi geometrijskimi orodji. Množico rn-konstruktibilnih števil opišemo kot pitagorejsko polje. Nadaljujemo z osrednjo temo našega dela, to so konstrukcije z ravnilom in fiksno krožnico s podanim središčem. Formuliramo Poncelet-Steinerjev izrek in predstavimo analitični dokaz izreka. V zadnjem poglavju pokažemo osnovne primere Steinerjevih konstrukcij in z analizo primera dokažemo njihov obstoj. Z uporabo teh konstrukcij dokažemo tudi Poncelet-Steinerjev izrek, na drugačen, tako imenovan sintetični način.

Language:Slovenian
Keywords:Poncelet-Steinerjev izrek, geometrijske konstrukcije, Steinerjeve konstrukcije, konstruktibilnost, r-konstruktibilnost, geometrija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Place of publishing:Ljubljana
Publisher:T. Žakelj
Year:2024
Number of pages:VIII, 50 str.
PID:20.500.12556/RUL-159242 This link opens in a new window
UDC:514(043.2)
COBISS.SI-ID:200983043 This link opens in a new window
Publication date in RUL:04.07.2024
Views:233
Downloads:42
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Geometric Constructions with a Ruler and the Poncelet-Steiner Theorem
Abstract:
In the master thesis we introduce and present the standard geometric constructions with ruler and compass. We set the analytical criteria for constructibility and show how to construct new geometric objects from already given ones. Then we show that all ruler and compass numbers form an Euclidean field. In the next chapter we switch to the non-standard geometric constructions with ruler only, and we pick a starter set with four arbitrary points. We use a theorem from elementary geometry - the Trapezoid Theorem, that gives us a construction to bisect the segments on the parallel lines, and its Corollary, that gives us a construction of a parallel line that intersects the segment bisecting line. We continue with definitions of a ruler point, a ruler line, a ruler circle and a ruler number. We show which constructions are possible with ruler alone and characterize the field of ruler numbers. In the third chapter we introduce the geometric constructions with ruler and dividers. We also present other geometric tools that are similar to dividers, such as rusty dividers, angle bisector and the cannon. We show that all ruler and dividers numbers form a Pythagorean field. Next, we move on to the main chapter of our thesis, the ruler and circle constructions. We pick a different starter set and we define a ruler and circle point and a ruler and circle line. We proclaim the main theorem - The Poncelet-Steiner Theorem and we demonstrate the analytic methods to prove the theorem. In the last chapter we present the basic Steiner constructions. With a proof of all these constructions, we also prove the Poncelet-Steiner Theorem in a different, synthetic way.

Keywords:Poncelet-Steiner theorem, geometric constructions, Steiner constructions, ruler and compass constructions, ruler constructions

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back