izpis_h1_title_alt

Razvoj novih protokolov molekulskega sidranja z vključitvijo globokih nevronskih mrež
ID Srovin, Jure Vito (Author), ID Ilc, Nejc (Mentor) More about this mentor... This link opens in a new window, ID Sluga, Davor (Comentor), ID Jukić, Marko (Comentor)

.pdfPDF - Presentation file, Download (5,25 MB)
MD5: 16A5EFDD5DC19A50C383FDC8B8F7C0B0

Abstract
Molekulsko sidranje je vrsta računalniške simulacije, katere naloga je odkriti način vezave majhne molekule ali liganda na večjo receptorsko molekulo. Uspešnost sidranja je odvisna od učinkovitosti iskalnega algoritma, ki preiskuje prostor možnih poz, ter cenilne funkcije, ki ocenjuje njihov potencial vezave znotraj vezavnega mesta. Zaradi sposobnosti učenja kompleksnih odvisnosti iz podatkov smo se odločili integrirati model globokega učenja v obstoječi protokol sidranja orodja CmDock. Izbrali smo model AQDnet, saj je ta dosegel odlične rezultate na primerjalni zbirki CASF-2016, in ga uporabili kot cenilno funkcijo med sidranjem. Poskusili smo ga integrirati na tri različne načine, pri čemer je bil model uspešen le pri ponovnem ocenjevanju sidranih poz. Sidranje z uporabo modela AQDnet je doseglo nekoliko boljši povprečen RMSD na 90 kompleksih iz zbirke DUD-E v primerjavi s cenilko CmDock, vendar pa je bila cenilka CmDock vseeno uspešnejša pri sidranju nekaterih kompleksov. Prav tako smo pospešili algoritem za generiranje značilk, ki jih model AQDnet potrebuje za podajanje ocen, in sicer za približno 20-krat.

Language:Slovenian
Keywords:globoko učenje, molekulsko sidranje, cenilna funkcija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-159229 This link opens in a new window
COBISS.SI-ID:202899715 This link opens in a new window
Publication date in RUL:04.07.2024
Views:281
Downloads:76
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Development of new protocols for molecular docking by incorporating deep neural networks
Abstract:
Molecular docking is a type of computer simulation aimed at finding the binding mode between a small molecule or ligand and a larger receptor molecule. The success of docking simulation depends on the efficiency of the search algorithm that explores the space of possible conformations and the scoring function that evaluates their binding potential within the binding site. Due to the ability to learn complex dependencies from data, we decided to integrate a deep-learning model into the existing docking protocol of the CmDock tool. We chose the AQDnet model because it achieved excellent results on the CASF-2016 benchmark and used it as a scoring function during docking. We tried to integrate it in three different ways, with the model being successful only in rescoring docked poses. Docking using the AQDnet model achieved a slightly better average RMSD on 90 complexes from the DUD-E dataset compared to the CmDock scoring function. However, the CmDock scoring function was still more successful when docking some of the complexes. We also accelerated the algorithm for feature generation required by the AQDnet model for scoring by about 20 times.

Keywords:deep learning, molecular docking, scoring function

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back