izpis_h1_title_alt

Homogena funkcijska povprečja : delo diplomskega seminarja
ID Nahtigal, Lara (Author), ID Drinovec Drnovšek, Barbara (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (434,53 KB)
MD5: 239311A0091EB819E133B999DBDF09BB

Abstract
Diplomska naloga raziskuje točke iz domene, v katerih funkcija zavzame svojo funkcijsko povprečje. Konkretno preučuje zvezne strogo monotone funkcije in njihova funkcijska povprečja. Z analizo Cauchyjevih funkcijskih enačb in lastnosti konveksnih funkcij želimo identificirati vse zvezne strogo monotone funkcije s homogenimi funkcijskimi povprečji.

Language:Slovenian
Keywords:povprečna vrednost, homogeno funkcijsko povprečje, Cauchyjeva funkcijska enačba, Jensenova enačba, konveksna funkcija, zvezna funkcija
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-159228 This link opens in a new window
UDC:517.5
COBISS.SI-ID:200799235 This link opens in a new window
Publication date in RUL:04.07.2024
Views:196
Downloads:39
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Homogeneus functional means
Abstract:
This bachelor thesis explores the points within a function’s domain where the function takes its functional mean. Specifically, it investigates continuous strictly monotone functions and their functional means. By analyzing Cauchy functional equations and the properties of convex functions, we aim to identify all continuous strictly monotone functions with homogeneous functional means.

Keywords:mean value, homogeneous functional mean, Cauchy functional equation, Jensen equation, convex function, continuous function

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back