izpis_h1_title_alt

Modeliranje pogojne neodvisnosti s pomočjo grafov : delo diplomskega seminarja
ID Gojkovič, Jošt (Author), ID Košir, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (315,67 KB)
MD5: DD52B310F90ACFBD7B5CA512526661E7

Abstract
Grafični model ali verjetnostni grafični model je verjetnostni model, kjer vozlišča grafov predstavljajo slučajne spremenljivke in povezave, oziroma odsotnost povezav predstavljajo pogojne neodvisnosti med spremenljivkami. Grafični modeli torej kompaktno predstavijo skupne verjetnostne porazdelitve. Diplomsko delo je osredotočeno na tri skupine grafov: neusmerjeni grafi, usmerjeni aciklični grafi ter verižni grafi. Pravila za razbiranje pogojnih neodvisnosti iz grafa se imenujejo markovske lastnosti, podrobneje, imamo paroma markovsko lastnost, lokalno markovsko lastnost in globalno markovsko lastnost. Od naštetih je najmočnejša globalna markovska lastnost, saj poda najstrožji kriterij za razbiranje pogojnih neodvisnosti. Prav tako je pomembna faktorizacijska lastnost gostote glede na dani graf, saj je ta neposredno povezana s pogojno neodvisnostjo. Pri vsaki skupini grafov predstavimo pomemben rezultat, ki se tiče ekivivalence zgoraj omenjenih lastnosti.

Language:Slovenian
Keywords:grafični modeli, moralni graf, pogojna neodvisnost, markovske lastnosti, faktorizacijska lastnost
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-159094 This link opens in a new window
UDC:519.2
COBISS.SI-ID:200223747 This link opens in a new window
Publication date in RUL:29.06.2024
Views:206
Downloads:37
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Modeling conditional independence with graphs
Abstract:
A graphical model or a probabilistic graphical model is a probabilistic model where the nodes of the graphs represent random variables, and the edges or the absence of them represent conditional independencies between variables. Graphical models thus provide a compact representation of joint probability distributions. The graduation seminar focuses on three groups of graphs: undirected graphs, directed acyclic graphs, and chain graphs. The rules for inferring conditional independencies from the graph are called Markov properties, specifically, we have pairwise Markov property, local Markov property, and global Markov property. Of these, the strongest is the global Markov property, as it provides the strictest criterion for inferring conditional independencies. The factorization property of density with respect to a given graph is also important, as it is directly related to conditional independence. For each group of graphs, an important result concerning the equivalence of the above mentioned properties is presented.

Keywords:graphical models, moral graph, conditional independence, Markov property, factorization property

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back