izpis_h1_title_alt

Kakovost prileganja za linearne modele
ID Peterlin, Jakob (Author), ID Blagus, Rok (Mentor) More about this mentor... This link opens in a new window, ID Kejžar, Nataša (Comentor)

.pdfPDF - Presentation file, Download (15,04 MB)
MD5: 08169320C157A707C22F46019A8305A6

Abstract
Ta doktorska disertacija se osredotoča na problem preverjanja primernosti prileganja za linearne mešane modele. V disertaciji je predstavljena nova metoda, ki je teoretično utemeljena in podprta s številnimi simulacijami ter praktičnim primerom. Predlagana metoda temelji na dveh družinah slučajnih procesov, vsaka z enim primarnim in več sekundarnimi procesi, ki se uporabljajo za preverjanje ničelne hipoteze. Poleg tega disertacija prikazuje, kako lahko podobne metode z enim primarnim in več sekundarnimi stohastičnimi procesi prilagodimo različnim statističnim modelom, tako da preverjamo kakovost prileganja linearnega regresijskega modela z uporabo dveh nekoliko enostavnejših metod. Skupaj predstavlja ta disertacija dragocen prispevek k statističnemu modeliranju, saj uvaja novo metodo za preverjanje primernosti prileganja za linearne mešane modele in raziskuje njene potencialne uporabe tudi pri drugih linearnih modelih.

Language:Slovenian
Keywords:linearni mešani modeli, kakovost prileganja, statistični test
Work type:Doctoral dissertation
Organization:MF - Faculty of Medicine
Year:2023
PID:20.500.12556/RUL-159033 This link opens in a new window
Publication date in RUL:28.06.2024
Views:166
Downloads:55
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:​Goodness of Fit for Linear Models
Abstract:
This Ph.D. thesis primarily addresses the problem of testing the goodness of fit for linear mixed models. The thesis introduces a novel method that is both theoretically sound and supported by several simulations and a practical example. The proposed method is based on two families of stochastic processes, each with one primary and several secondary processes used to test the null hypothesis. Additionally, the thesis demonstrates how similar methods with one primary and multiple secondary stochastic processes can be adapted for different statistical models by examining the goodness of fit of a linear regression model using two slightly simpler methods. Overall, this thesis presents a valuable contribution to statistical modeling by introducing a new method for testing the goodness of fit of linear mixed models and exploring its potential applications to other linear models.

Keywords:linear mixed models, goodnes of fit, statistical test

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back