izpis_h1_title_alt

Analiza in klasifikacija EKG signalov z metodami strojnega učenja : magistrsko delo
ID Kaplan, Katarina (Author), ID Knez, Marjetka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,75 MB)
MD5: A146601259A3260DF8F81EAA87816D2E

Abstract
V magistrskem delu so predstavljene različne funkcije, pripomočki in aplikacije uporabne za analizo in klasifikacijo EKG signalov s pomočjo programa Matlab. Obravnavali smo postopke za izločanje šuma in trendov v podatkih. Ogledali smo si paket Signal Processing Toolbox v Matlabu in možne načine za izluščitev lastnosti iz EKG signalov. Signale smo razdelili na bloke, ki vsebujejo po en QRS kompleks. Za redukcijo dimenzij smo uporabili metodo PCA na posameznih blokih. Z metodo SVM smo klasificirali EKG signale tako, da smo jih razvrstili v dva razreda: signale z normalnim srčnim utripom in signale z atrijsko fibrilacijo. Najprej smo uporabili metodo SVM na učni in testni množici, potem pa smo naredili še klasifikacijo na učni množici ter uporabili naučen model za napovedovanje na testni množici. Dobljeni rezultati so pokazali, da ima model zadovoljivo natančnost. Za primerjavo uspešnosti modela smo na koncu izvedli še klasifikacijo z LSTM nevronskimi mrežami na reduciranih podatkih s pomočjo metode PCA.

Language:Slovenian
Keywords:EKG signali, strojno učenje, klasifikacija, Matlab
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-158819 This link opens in a new window
UDC:519.7
COBISS.SI-ID:199255811 This link opens in a new window
Publication date in RUL:21.06.2024
Views:231
Downloads:47
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:ECG signal analysis and classification with machine learning methods
Abstract:
The master's thesis presents various functions, tools and applications useful for the analysis and classification of ECG signals using the Matlab program. We discussed procedures for removing noise and trends in data. We looked at the Signal Processing Toolbox package in Matlab and possible ways to extract features from ECG signals. The signals were divided into blocks containing one QRS complex each. To reduce dimensions, we used the PCA method on individual blocks. Using the SVM method, we organized the ECG signals by classifying them into two classes: signals with a normal heartbeat and signals with atrial fibrillation. First, we used the SVM method on the training and test sets, and then we did classification on the training set and used the learned model for prediction on the test set. The obtained results showed that the model has satisfactory accuracy. In order to compare the performance of the model, we finally performed a classification with LSTM neural networks on the reduced data using the PCA method.

Keywords:ECG signals, machine learning, classification, Matlab

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back