izpis_h1_title_alt

Indeks razdaljne neuravnoteženosti grafov : magistrsko delo
ID Uranič, Nuša (Author), ID Šparl, Primož (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,13 MB)
MD5: CF045AF5AA1D61E76114148D54111965

Abstract
V magistrskem delu najprej predstavimo pojem razdaljno uravnoteženega grafa ter si pogledamo nekaj primerov takih grafov in primer družine grafov, kjer noben član ni razdaljno uravnotežen. Nato predstavimo naravno posplošitev tega koncepta ter tako pridemo do l-razdaljno uravnoteženih grafov. Tu si za primer najprej pogledamo Cayleyeve grafe Abelovih grup, ki so povsem razdaljno uravnoteženi, nato pa se osredotočimo na posplošene Petersenove grafe. V nadaljevanju pridemo preko tako imenovanega Mostarjevega indeksa do indeksa razdaljne neuravnoteženosti ter določimo vrednosti tega indeksa za poti in polne večdelne grafe ter nato še za dve manj znani družini grafov. Da so navedene vrednosti pravilne, tudi teoretično dokažemo. Zatem predstavimo nekaj rezultatov in domnev glede najmanjšega in drugega najmanjšega možnega indeksa razdaljne neuravnoteženosti za drevesa danega reda. Za konec predstavimo dokaz izreka, ki nam pove, da je med vsemi drevesi reda n, kjer je n>=5, zvezda S_{n-1} edino drevo reda n z najmanjšim možnim indeksom razdaljne neuravnoteženosti.

Language:Slovenian
Keywords:l-razdaljno uravnotežen graf, indeks razdaljne neuravnoteženosti, drevo, matematika
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Place of publishing:Ljubljana
Publisher:N. Uranič
Year:2024
Number of pages:82 str.
PID:20.500.12556/RUL-158719 This link opens in a new window
UDC:51(043.2)
COBISS.SI-ID:199563267 This link opens in a new window
Publication date in RUL:19.06.2024
Views:330
Downloads:51
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Distance-Unbalancedness Index of Graphs
Abstract:
In this master's thesis we firstly introduce the concept of a distance-balanced graph. Then we present some examples of distance-balanced graphs and a family of graphs, no member of which is distance-balanced. We then make a natural generalization of this concept to define l-distance-balanced graphs. Here, as an example, we look at Cayley graphs of abelian groups, which are all highly distance-balanced. Then we focus on generalized Petersen graphs. In the second main part of the thesis we generalize the so-called Mostar index to define the distance-unbalancedness index of a graph. Here we first compute this index for paths and complete multipartite graphs and then also for some lesser-known families of graphs. After that we present a few results and conjectures regarding the smallest and the second smallest possible value of the distance-unbalancedness index for trees of given order. Finally, we present the proof of the theorem showing that among all trees of order n, where n>=5, the star S_{n-1} is the unique tree of order n with the smallest possible value of the distance-unbalancedness index.

Keywords:l-distance-balanced graph, distance-unbalancedness index, tree

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back