izpis_h1_title_alt

Lokalizacija igralcev v rokometu z globokimi prednaučenimi modeli
ID Mlakar, Jernej (Author), ID Perš, Janez (Mentor) More about this mentor... This link opens in a new window, ID Ivanovska, Marija (Comentor)

.pdfPDF - Presentation file, Download (11,33 MB)
MD5: 80D4D811A0D631C5AFCBEFF9709F1257

Abstract
Umetna inteligenca ter računalniški vid sta v športu zelo koristna in kakovostna pripomočka, saj nam skrajšata čas iskanja, zbiranja ter analiziranja podatkov. Ker pa umetna inteligenca še ni dovolj napredna za nekoliko kompleksnejše programe ter ideje, je človeško znanje trenutno še v veliki prednosti. Če si predstavljamo program, ki bi potreboval samo posnetek rokometne tekme in v hipu vrnil segmentirane podatke vseh posameznikov ter njihovih strelov, se mogoče zasnova za tak program ne zdi tako kompleksna. Ob podrobni poglobitvi v zasnovo se zavemo, da je za nastanek takšne aplikacije potrebno mnogo različnih pristopov ter vloženega dela. Ena izmed največjih osnov za takšno aplikacijo bi bila lokalizacija igralcev z globoko naučenimi algoritmi. Takšna lokalizacija je precej odvisna od človeške pomoči, saj je potrebno algoritme zaganjati fizično. Vendar je nekje potrebno začeti, saj lahko samo tako pridemo do želenih ciljev. S pomočjo različnih vnaprej pripravljenih algoritmov ter lastnega znanja lahko iz amaterskih posnetkov rokometne tekme pridobimo lokacijo igralcev na tlorisu rokometnega igrišča oziroma iz tridimenzionalnega v dvodimenzionalni prostor. Rezultati, ki jih vrne lokalizacija, so zadovoljivi za pogoje, v katerih so bili podatki zajeti. Zaradi amaterskih posnetkov, uporabe ene samcate kamere ter slabe postavitve pri preslikavah igralcev prihaja do odstopanj. V popolnih delovnih pogojih, kjer bi bilo več kamer, ki bi bile postavljene na boljših položajih, bi bili rezultati nekoliko točnejši, vendar nikoli dovolj precizni, zaradi nepopolne transformacije iz tridimenzionalnega v dvodimenzionalni prostor.

Language:Slovenian
Keywords:Računalniški vid, algoritem, lokalizacija, rokomet
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-158685 This link opens in a new window
COBISS.SI-ID:199590403 This link opens in a new window
Publication date in RUL:19.06.2024
Views:298
Downloads:46
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Handball Player Localisation in Handball Using Deep Pre-trained Models
Abstract:
Artificial intelligence and computer vision are very useful and high-quality tools in sport, as they reduce the time needed to search, collect and analyse data. However, as artificial intelligence is not yet advanced enough for slightly advanced programs and ideas, human knowledge is currently still at a great advantage. If we imagine a program that only needed to take a snapshot of a handball match and instantly return segmented data of all the individuals and their shots, perhaps the design for such a program does not seem so complex. When we look into the design in more detail, we realise that many different approaches and work are needed to create such an application. One of the biggest basics for such an application would be the localization of players with deeply learned algorithms. Such localization relies heavily on human assistance, as the algorithms need to be physically launched. But we have to start somewhere, because that is the only way to get to the desired goals. With the help of various pre-prepared algorithms and our own knowledge, we can extract the location of players on the layout of a handball court from amateur footage of a handball match, or from three-dimensional to two-dimensional space. The results returned by the localisation are acceptable for the conditions in which the data were captured. Due to amateur shots, the use of a single camera and poor placement, there are deviations in the mapping of the players. In perfect working conditions, where there would be several cameras placed in better positions, the results would be slightly more accurate, but never precise enough, due to the incomplete transformation from three-dimensional to two-dimensional space.

Keywords:Computer vision, algorithm, localization, handball

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back