izpis_h1_title_alt

Učinki elektrokemoterapije in ionizirajočega sevanja na imunološko pomembne spremembe v tumorskih celicah
ID Kešar, Urša (Author), ID Strojan, Primož (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,76 MB)
MD5: 5943A127876833CD6D596F4B3A164E81

Abstract
Znanstveno izhodišče: Za zdravljenje tumorjev se uporabljajo različne ablativne terapije, med njimi radioterapija (RT) in elektrokemoterapija (EKT). Pri RT tumorske celice umirajo zaradi učinkov ionizirajočega sevanja (IR), pri EKT, ki združuje citostatike in elektroporacijo tkiva, pa tumorske celice umirajo zaradi citotoksičnosti zdravila na mestu aplikacije električnih pulzov. Obe terapiji s svojim delovanjem povzročata poškodbe dednega materiala tumorskih celic (DNA), s čimer onemogočata njihovo nadaljnjo delitev, in sprožita aktivacijo imunskega sistema ter povzročita različne vrste celične smrti. Mednje uvrščamo imunogeno celično smrt (ICD), apoptozo, nekrozo in avtofagijo. ICD predstavlja način umiranja celic, kjer je spodbujen pridobljen imunski odziv proti neoantigenom. Molekule, vpletene v ICD, so: na celični membrani izpostavljen kalretikulin (CRT), izven celice sproščen protein HMGB1 ter adenozin trifosfat (ATP). Poleg tega k imunskemu (ne)odzivu prispevajo tudi druge, imunološko pomembne spremembe v tumorskih celicah, ki vključujejo molekule MHC I in II ter PD-L1 in CD40. Dokazano je, da lahko RT izzove aktivacijo gostiteljevega imunskega sistema in sproži ICD, kar se odraža v imunskem spominu ter včasih sistemskih protitumorskih učinkih, ni pa znano, katere doze in režimi najučinkoviteje aktivirajo imunski sistem pri različnih vrstah tumorskih modelov. Učinkovitost EKT je sicer odvisna od imunogenosti tumorjev in njihove intrinzične občutljivosti na citostatike. Za optimizacijo aktivacije imunskega odziva z EKT je zato treba določiti, kateri citostatik, koncentracija in časovni okvir po terapiji izzovejo največ imunološko pomembnih sprememb v tumorskih celicah. Namen doktorske naloge je bil tako ugotoviti, kateri citostatik, ki se uporablja v EKT, ter v kakšni koncentraciji in v katerem časovnem okviru po terapiji v največji meri izzove imunološko pomembne spremembe v tumorskih celicah in vitro ter te primerjati s spremembami po IR. Metode: V prvem delovnem sklopu doktorske naloge smo določili občutljivost mišjih tumorskih celičnih linij B16-F10 (melanom), 4T1 (karcinom dojke) in CT26 (rak debelega črevesa) in vitro na EKT z različnimi citostatiki in na IR. Najprej smo določili elektropermeabilnost celičnih linij, tako da smo suspenzijskim celicam dodali propidijev jodid, nato pa to suspenzijo napipetirali med dve ploščati elektrodi (z razdaljo med elektrodama 2,4 mm) ter jim dovedli električne pulze (8 pulzov, 100 µs, 1 Hz), ki smo jim spreminjali napetost na razdalji. V nadaljevanju smo določili preživetje celičnih linij po EKT s cisplatinom (CDDP), oksaliplatinom (OXA) in bleomicinom (BLM) in IR s testom klonogenosti. Z generatorjem električnih pulzov Jouan GHT beta smo celicam dovedli električne pulze, ki se uporabljajo pri EKT v kliniki (8 pulzov, 1300 V/cm, 100 µs, 1 Hz), nato pa celice v različnem številu nasadili na plošče. Za določitev radioobčutljivosti smo celice v različnem številu najprej nasadili na plošče in jih po treh urah obsevali z različnimi dozami IR. Za vsak citostatik smo iz krivulj preživetja določili inhibitorne koncentracije, z linearno-kvadratnim modelom pa smo izračunali inhibitorne doze IC30, IC50, IC70. V drugem delovnem sklopu smo celice in vitro tretirali z inhibitornimi dozami, nato pa ugotavljali izpostavljenost CRT na celični membrani s pretočnim citometrom. Sproščanje HMGB1 smo določili s testom ELISA, sproščanje ATP pa s testom za določanje luminiscence. Za določitev apoptoze in nekroze smo uporabili dve metodi. Pri prvi metodi smo celične linije in vitro tretirali z inhibitornimi dozami, nato pa za določanje uporabili pretočni citometer. Pri drugi metodi pa smo celice nasadili na ploščice, jih tretirali z inhibitornimi dozami, dodali fluorescentna reagenta ter s slikanjem v časovni seriji spremljali sproti obarvane apoptotične in nekrotične celice. Za določitev avtofagije smo celične linije in vitro tretirali z IC50, nato pa jih nasadili na plošče in inkubirali 24 ur. Za analizo smo uporabili test za določitev avtofagije, slike preparatov pa smo zajemali z mikroskopom. V zadnjem, tretjem delovnem sklopu smo določili spremembe v prisotnosti imunološko pomembnih membranskih označevalcev po obeh terapijah. S pretočnim citometrom smo preverili izražanje celičnih označevalcev MHC I, MHC II, PD-L1 ter CD40 v različnih časovnih točkah po tretiranju z inhibitornimi dozami in vitro. Rezultati: V prvem delovnem sklopu smo ugotovili, da so vse tri celične linije (B16-F10, 4T1, CT26) primerljivo permeabilne pri vseh testiranih napetostih ter so bile vse tri enako občutljive na CDDP in BLM ter IR. V drugem sklopu smo pokazali, da celice po EKT večinoma umrejo takoj, medtem ko celice po IR poskušajo nastale poškodbe DNA najprej popraviti in je celična smrt pravzaprav posledica neuspešnega popravila. V splošnem je EKT imela ugodnejše učinke na nastanek ICD tudi pri manj imunogenih celičnih linijah v primerjavi z IR, saj je povzročila ICD pri več linijah ter pri različnih koncentracijah, medtem ko se je pri IR to zgodilo samo pri celični liniji CT26. Nadalje smo določali pojav apoptoze in nekroze po obeh terapijah, kjer smo opazili, da se po EKT pojavita dva neodvisna vrhova, v katerih celice umirajo. Prvi se pojavi takoj po EKT, drugi pa 24 do 48 ur po EKT s prevladujočim nekrotičnim načinom umiranja, ne glede na vrsto citostatika ali celično linijo. Nasprotno pa smo opazili po IR, kjer so celice umirale šele v poznejših časovnih točkah, kjer je prav tako prevladovala nekroza. Pri vseh treh celičnih linijah se je število mrtvih celic višalo z višanjem doze ter daljšanjem časa po IR. V nadaljnjih poskusih smo povišanje avtofagije opazili samo pri celični liniji 4T1 po EKT s CDDP in BLM, nasprotno pa smo ugotovili, da se je avtofagija po IR znižala pri celični liniji B16-F10. Pri preučevanju sprememb v prisotnosti MHC I, MHC II, PD-L1 ter CD40 smo pokazali, da je EKT z vsemi tremi citostatiki sprožila povišanje izražanja MHC I in PD-L1 pri vseh treh celičnih linijah, izražanje MHC II pa se je znižalo pri vseh citostatikih, razen pri celični liniji B16-F10, kjer se je izražanje povišalo. V nadaljevanju smo pokazali, da molekulo CD40 izraža samo celična linija 4T1, pri kateri se je izražanje CD40 povišalo po EKT z vsemi citostatiki, razen pri koncentracijah IC30 in IC50 BLM. Tudi IR je povišalo izražanje molekul MHC I pri vseh treh celičnih linijah ter vseh dozah sevanja, razen pri celični liniji 4T1 pri dozi IC30. Tudi izražanje PD-L1 se je povišalo pri vseh treh linijah in dozah, pri 4T1 pa tudi CD40. Pri molekuli MHC II smo največ sprememb ugotovili pri celični liniji B16-F10. Zaključki: V raziskavi smo dokazali, da EKT s klinično pomembnimi citostatiki CDDP, OXA in BLM izzove različne imunološko pomembne spremembe v tumorskih celicah in vitro, odvisno od vrste citostatika, njegove koncentracije ter tumorskega modela. Pokazali smo tudi, da IR povzroči primerljive spremembe v izražanju celičnih površinskih označevalcev MHC I, MHC II, PD-L1 in CD40, vendar to ni časovno usklajeno s spremembami po EKT. EKT je sprožila največ sprememb v izražanju z ICD povezanih molekul DAMP (CRT, HMGB1, ATP) pri manj imunogeni celični liniji 4T1, IR pa je sprožilo največ sprememb v izražanju z ICD povezanih molekul DAMP pri najbolj imunogeni celični liniji CT26. EKT s klinično pomembnimi citostatiki CDDP, OXA in BLM zato lahko uvrstimo na seznam terapij, ki sprožijo ICD in vitro. Z našimi rezultati smo omogočili mehanističen vpogled v to, kako izkoristiti potencial ICD, da se sproži sistemski protitumorski imunski odziv, še posebej ko EKT kombiniramo z imunoterapijo.

Language:Slovenian
Keywords:Elektrokemoterapija, ionizirajoče sevanje, cisplatin, oksaliplatin, bleomicin, imunogena celična smrt, ATP, HMGB1, kalretikulin, MHC I, MHC II, PD-L1, CD40
Work type:Doctoral dissertation
Organization:MF - Faculty of Medicine
Year:2024
PID:20.500.12556/RUL-156398 This link opens in a new window
Publication date in RUL:24.05.2024
Views:369
Downloads:70
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Effects of electrochemotherapy and ionizing radiation on immunologically important modifications in tumor cells
Abstract:
Scientific background: Various ablative techniques are used to treat tumors, including radiotherapy (RT) and electrochemotherapy (ECT). With RT, the tumor cells die due to the effect of ionizing radiation (IR), while with ECT, as a result of a combination of chemotherapeutic agents and the electroporation of tissues, the tumor cells die at the site where the electrical pulse is applied due to the cytotoxic effect of the drug. Both therapies damage the genetic material of the tumor cells (DNA) and thus prevent their further proliferation, trigger the activation of the immune system and cause various types of cell death. These include immunogenic cell death (ICD), apoptosis, necrosis, and autophagy. ICD is a form of cell death in which the adaptive immune system is stimulated against tumor neoantigens. The molecules involved in ICD are: calreticulin exposed on the cell membrane (CRT), extracellularly released HMGB1, and adenosine triphosphate (ATP). In addition to these molecules, the immune (non-)response is influenced by other immunologically important changes in tumor cells, including the molecules MHC I and II, PD-L1, and CD40. RT has been shown to stimulate activation of the host immune system and trigger ICD, resulting in immune memory and sometimes systemic antitumor effects. However, it is not yet known which doses and procedures activate the immune system most effectively in different tumor models. The efficacy of ECT depends on the immunogenicity of the tumors and their intrinsic sensitivity to chemotherapeutic agents. Therefore, the type of chemotherapeutic agent, its concentration, and the time frame after therapy that induces the most immunological changes in tumor cells must be determined to optimize the activation of the immune response by ECT. The aim of this dissertation was to determine which chemotherapeutic agent used in ECT induces the most important immunological changes in tumor cells in vitro, at which concentration, and in which time frame after therapy, and to compare these with the changes after IR. Methods: In the first part of the dissertation, we investigated the sensitivity of the murine tumor cell lines B16-F10 (melanoma), 4T1 (mammary carcinoma), and CT26 (colorectal carcinoma) in vitro to ECT with different chemotherapeutic agents and to IR. First, we determined the electropermeability of the cell lines by adding propidium iodide to the suspension cells. The suspension was pipetted between two stainless steel plate electrodes (2.4 mm between the electrodes) and electroporated with pulses (8 pulses, 100 µs duration, 1 Hz) with different amplitude–to–distance ratios. In the next part of the study, we determined the survival of the cell lines after ECT using cisplatin (CDDP), oxaliplatin (OXA), and bleomycin (BLM), and after IR with a clonogenic assay. The Jouan GHT beta electrical pulse generator was used to deliver electrical pulses as used in clinical ECT (8 pulses, 1300 V/cm, 100 µs duration, 1 Hz), and cells were seeded in plates at different densities. To determine the radiosensitivity, the cells were seeded in plates at different densities and irradiated with different doses after three hours. The inhibitory concentrations were determined for each chemotherapeutic agent using the survival curves, and the inhibitory doses IC30, IC50, IC70 were calculated using a linear-quadratic model. In the second part, cells were treated in vitro with inhibitory doses, and then the exposure of CRT was determined by flow cytometry. HMGB1 release was determined by ELISA assay, and ATP release by luminescence assay. Two methods were used to determine apoptosis and necrosis. In the first method, the cell lines were treated in vitro with inhibitory doses, and then flow cytometry was used for determination. In the second method, cells were seeded on plates, treated with inhibitory doses, then fluorescent reagents were added and cells were monitored with time-lapse imaging. To determine autophagy, the cell lines were treated in vitro with IC50, then seeded on plates and incubated for 24 hours. The assay to determine autophagy was used for analysis, and images of the samples were taken with a microscope. In the last part, we determined the changes in the presence of immunologically important membrane markers after both therapies. The expression of the cell markers MHC I, MHC II, PD-L1, and CD40 was determined in vitro at different time points after treatment with inhibitory doses. Results: In the first part, we found that all three cell lines (B16-F10, 4T1, CT26) were comparably permeable at all tested voltage-to-distance ratios and equally sensitive to CDDP, BLM, and IR. In the second part, we showed that cells usually die immediately after ECT, whereas after IR they try to repair the DNA damage caused, and that cell death is actually the result of unsuccessful repair. In general, ECT had more favorable effects on the development of ICD compared to IR, even in less immunogenic cell lines, as it caused ICD in more lines and at different concentrations. In contrast, IR caused ICD only in CT26. Furthermore, we determined the development of apoptosis and necrosis after both therapies and showed that two separate peaks of cell death occur after ECT. The first occurs immediately after ECT and the second 24 to 48 hours after ECT, with necrosis being the main modality of death, regardless of the type of chemotherapeutic agent or cell line. In contrast, cells died at later time points after IR, but again necrosis was the main modality. The number of dying cells increased in proportion to both the dose and the duration following IR. In further experiments, we found the increase in autophagy only in the 4T1 after ECT with CDDP and BLM. In contrast, we found a decrease in autophagy in B16-F10 after IR. When examining the changes in the expression of MHC I, MHC II, PD-L1, and CD40, we were able to show that all chemotherapeutic agents caused an increase in the expression of MHC I and PD-L1 in all cell lines after ECT. The expression of MHC II decreased with all chemotherapeutics except for the B16-F10 cell line, where expression increased. Next, we showed that the CD40 molecule is expressed only by the 4T1 cell line and that its expression increased after ECT with all chemotherapeutics, except IC30 and IC50 of BLM. Furthermore, the expression of MHC I increased in all cell lines and after all doses used after IR, except in 4T1 at dose IC30. The expression of PD-L1 also increased in all cell lines and doses, and the expression of CD40 also increased in 4T1. Most changes in the MHC II molecule were observed in the B16-F10 cell line. Conclusions: With this study, we showed that ECT, together with the clinically relevant chemotherapeutics CDDP, OXA, and BLM, induces different immunologically important changes in tumor cells in vitro, depending on the type of chemotherapeutic agent, its concentration, and the tumor model. In addition, IR induces comparable changes in the expression of the cell surface markers MHC I, MHC II, PD-L1, and CD40, which, however, are not correlated in time with the changes after ECT. ECT caused the most changes in the expression of the DAMP molecules (CRT, HMGB1, ATP), which correlated with ICD in the less immunogenic cell line 4T1. IR caused the most changes in the expression of DAMP in the most immunogenic cell line CT26. ECT, together with the clinically relevant chemotherapeutics CDDP, OXA, and BLM, can therefore be included in the list of therapies that induce ICD in vitro. Our results provide mechanistic insights into how the potential of ICDs to trigger a systemic anti-tumor immune response can be exploited, especially when ECT is combined with immunotherapy.

Keywords:Electrochemotherapy, ionizing radiation, cisplatin, oxaliplatin, bleomycin, immunogenic cell death, ATP, HMGB1, calreticulin, MHC I, MHC II, PD-L1, CD40

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back