izpis_h1_title_alt

Connectivity with uncertainty regions given as line segments
ID Cabello, Sergio (Author), ID Gajser, David (Author)

.pdfPDF - Presentation file, Download (676,45 KB)
MD5: 91E7076F90671644948C34E586C81103
URLURL - Source URL, Visit https://link.springer.com/article/10.1007/s00453-023-01200-5 This link opens in a new window

Abstract
For a set ${\mathcal Q}$ of points in the plane and a real number $\delta \ge 0$, let $\mathbb{G}_\delta({\mathcal Q})$ be the graph defined on ${\mathcal Q}$ by connecting each pair of points at distance at most $\delta$. We consider the connectivity of $\mathbb{G}_\delta({\mathcal Q})$ in the best scenario when the location of a few of the points is uncertain, but we know for each uncertain point a line segment that contains it. More precisely, we consider the following optimization problem: given a set ${\mathcal P}$ of $n-k$ points in the plane and a set ${\mathcal S}$ of $k$ line segments in the plane, find the minimum $\delta \ge 0$ with the property that we can select one point $p_s\in s$ for each segment $s\in {\mathcal S}$ and the corresponding graph $\mathbb{G}_\delta( {\mathcal P}\cup \{ p_s\mid s\in {\mathcal S}\})$ is connected. It is known that the problem is NP-hard. We provide an algorithm to exactly compute an optimal solution in ${\mathcal O}(f(k) n \log n)$ time, for a computable function $f(\cdot)$. This implies that the problem is FPT when parameterized by $k$. The best previous algorithm uses ${\mathcal O}((k!)^k k^{k+1}\cdot n^{2k})$ time and computes the solution up to fixed precision.

Language:English
Keywords:computational geometry, uncertainty, geometric optimization, fixed parameter tractability, parametric search
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2024
Number of pages:Str. 1512-1544
Numbering:Vol. 86, iss. 5
PID:20.500.12556/RUL-156134 This link opens in a new window
UDC:519.17
ISSN on article:0178-4617
DOI:10.1007/s00453-023-01200-5 This link opens in a new window
COBISS.SI-ID:180364547 This link opens in a new window
Publication date in RUL:10.05.2024
Views:287
Downloads:45
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Algorithmica
Shortened title:Algorithmica
Publisher:Springer Nature
ISSN:0178-4617
COBISS.SI-ID:24917760 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Projects

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0297
Name:Teorija grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-1693
Name:Sodobni in novi metrični koncepti v teoriji grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-2452
Name:Strukturni, optimizacijski in algoritmični problemi v geometrijskih in topoloških predstavitvah grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0218
Name:Prepletanje geometrije, topologije in algebre v strukturni in topološki teoriji grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0285
Name:Metrični problemi v grafih in hipergrafih

Funder:EC - European Commission
Funding programme:HE
Project number:101071836
Name:Predicting flow and transport in complex Karst systems
Acronym:KARST

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back