Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Dynamic profiling and binding affinity prediction of NBTI antibacterials against DNA gyrase enzyme by multidimensional machine learning and molecular dynamics simulations
ID
Kokot, Maja
(
Avtor
),
ID
Minovski, Nikola
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(12,70 MB)
MD5: AFF5F66B8138F99B8DAA9901D9631DC3
URL - Izvorni URL, za dostop obiščite
https://pubs.acs.org/doi/10.1021/acsomega.4c00036
Galerija slik
Izvleček
Bacterial type II topoisomerases are well-characterized and clinically important targets for antibacterial chemotherapy. Novel bacterial topoisomerase inhibitors (NBTIs) are a newly disclosed class of antibacterials. Prediction of their binding affinity to these enzymes would be beneficial for de novo design/optimization of new NBTIs. Utilizing in vitro NBTI experimental data, we constructed two comprehensive multidimensional DNA gyrase surrogate models for Staphylococcus aureus (q$^2$ = 0.791) and Escherichia coli (q$^2$ = 0.806). Both models accurately predicted the IC$_{50}$s of 26 NBTIs from our recent studies. To investigate the NBTI’s dynamic profile and binding to both targets, 10 selected NBTIs underwent molecular dynamics (MD) simulations. The analysis of MD production trajectories confirmed key hydrogen-bonding and hydrophobic contacts that NBTIs establish in both enzymes. Moreover, the binding free energies of selected NBTIs were computed by the linear interaction energy (LIE) method employing an in-house derived set of fitting parameters (α = 0.16, β = 0.029, γ = 0.0, and intercept = −1.72), which are successfully applicable to DNA gyrase of Gram-positive/Gram-negative pathogens. Both methods offer accurate predictions of the binding free energies of NBTIs against S. aureus and E. coli DNA gyrase. We are confident that this integrated modeling approach could be valuable in the de novo design and optimization of efficient NBTIs for combating resistant bacterial pathogens.
Jezik:
Angleški jezik
Ključne besede:
bacteria
,
genetics
,
ligands
,
peptides
,
proteins
,
screening assays
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FFA - Fakulteta za farmacijo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
Str. 18278–18295
Številčenje:
Vol. 9, iss. 16
PID:
20.500.12556/RUL-156062
UDK:
577
ISSN pri članku:
2470-1343
DOI:
10.1021/acsomega.4c00036
COBISS.SI-ID:
192354563
Datum objave v RUL:
06.05.2024
Število ogledov:
346
Število prenosov:
59
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
ACS omega
Skrajšan naslov:
ACS omega
Založnik:
American Chemical Society
ISSN:
2470-1343
COBISS.SI-ID:
525873945
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
biokemija
,
bakterije
,
topoizomeraze tipa I
,
zdravila
,
DNK
,
molekularna dinamika
,
Escherichia coli
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P1-0017
Naslov:
Modeliranje kemijskih procesov in lastnosti spojin
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Program financ.:
Young researchers
Številka projekta:
39010
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj