izpis_h1_title_alt

Lastnosti Markova za statistične grafične modele : magistrsko delo
ID Ražić, Tina (Author), ID Košir, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,09 MB)
MD5: 100E26BB6C7719BE7FFBF4020CE71E12

Abstract
Grafi predstavljajo intuitiven način za vizualiziranje in razumevanje kompleksnih odnosov med različnimi slučajnimi spremenljivkami. Vozlišča grafa predstavljajo slučajne spremenljivke, manjkajoče povezave pa predstavljajo pogojne neodvisnosti med spremenljivkami. Pravila, ki prevedejo lastnosti grafa v stavke pogojne neodvisnosti med spremenljivkami, se imenujejo lastnosti Markova. S pomočjo ločitvenih kriterijev lahko definiramo tri različne oblike lastnosti Markova: globalno, lokalno in lastnost Markova na parih. Pogojne neodvisnosti definirane z lastnostmi Markova določajo omejitve grafičnega modela. Verjetnostni grafični model na neusmerjenem grafu imenujemo omrežje Markova in Bayesovo omrežje na usmerjenem grafu. Diskretna omrežja Markova lahko parametriziramo s standardno log-linearno parametrizacijo za neusmerjene grafične modele, ki je izpeljana z uporabo Möbiusove inverzijske formule. Omrežja Markova in Bayesova omrežja imajo raznolike aplikacije v praksi, kot so obdelava slik ali sprejemanje informativnih odločitev pri upravljanju finančnih portfolijev.

Language:Slovenian
Keywords:grafični modeli, omrežja Markova, Bayesova omrežja, lastnosti Markova, ločitveni kriteriji, log-linearna parametrizacija, Möbiusova inverzija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-155994 This link opens in a new window
UDC:519.2
COBISS.SI-ID:193741315 This link opens in a new window
Publication date in RUL:26.04.2024
Views:382
Downloads:51
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Markov property for statistical graphical models
Abstract:
Graphs represent an intuitive way to visualize and understand complex relationships among different random variables. The nodes of the graph represent random variables, while missing connections represent conditional independencies among variables. Rules that translate graph properties into statements of conditional independence among variables are called Markov properties. Using separation criteria we can define three different types of Markov properties: global, local, and pairwise Markov property. Conditional independencies defined by Markov properties impose limitations on the graphical model. A probabilistic graphical model on an undirected graph is called a Markov network, and a Bayesian network on a directed graph. Discrete Markov networks can be parameterized with standard log-linear parameterization for undirected graphical models, derived through the application of Möbius inversion formula. Markov and Bayesian networks have diverse applications in practice, such as image processing or making informative decisions in managing financial portfolios.

Keywords:graphical models, Markov networks, Bayesian networks, Markov properties, separation criteria, log-linear parameterization, Möbius inversion

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back