Green chemistry is a branch of chemistry that focuses on the development of processes with minimal impact on the environment and human health. It represents a part of sustainable development, delving into ways to make certain reactions more environmentally friendly. This is crucial as humanity increasingly grapples with environmental issues, with chemistry contributing to this challenge. In the field of green chemistry, 12 principles have been outlined, serving as guidelines for planning and developing chemical processes.
Our focus was on the oxidative cleavage of double bonds between carbon atoms, particularly emphasizing this transformation in styrene, where the main product was benzoic acid.
In the first part of the experimental work, we examined the influence of different solvents on the oxidative cleavage of the double bonds in styrene using a 30% aqueous solution of hydrogen peroxide catalyzed by vanadium(V) oxide. The target product was benzoic acid. We found that the best selectivity and conversion to benzoic acid could be achieved using acetonitrile as a solvent. In the second part of the experimental work, we compared the reactivity of differently substituted styrene derivatives. We measured the relative rate constants of substituted styrenes compared to styrene for the oxidative cleavage with hydrogen peroxide and vanadium(V) oxide. Based on that we constructed a Hammett correlation plot, providing information about the mechanism of the reaction. We observed a positive value for the reaction constant ρ, indicating that electron-attracting substituent groups increase the reaction rate or stabilize its transition state. The reaction constant value was low, suggesting that the charge in the transition state does not develop, hinting at a radical mechanism.
To quantify the efficiency and "greenness" of the reaction, we calculated a green chemistry metric for our process and compared it with some conventional and green conversions of styrene to benzoic acid. We evaluated and graphically represented the results on Adraos diagrams, providing insight into the "greenness" of individual reactions.
|