izpis_h1_title_alt

Schwarz-Pick lemma for harmonic maps which are conformal at a point
ID Forstnerič, Franc (Author), ID Kalaj, David (Author)

.pdfPDF - Presentation file, Download (676,48 KB)
MD5: B12A5683B0E37329161A2C2205796E49
URLURL - Source URL, Visit https://msp.org/apde/2024/17-3/p04.xhtml This link opens in a new window

Abstract
We obtain a sharp estimate on the norm of the differential of a harmonic map from the unit disc ${\mathbb D}$ in ${\mathbb C}$ into the unit ball ${\mathbb B}^n$ in ${\mathbb R}^n$, $n\ge 2$, at any point where the map is conformal. In dimension $n=2$, this generalizes the classical Schwarz-Pick lemma, and for $n\ge 3$ it gives the optimal Schwarz-Pick lemma for conformal minimal discs ${\mathbb D}\to {\mathbb B}^n$. This implies that conformal harmonic immersions $M \to {\mathbb B}^n$ from any hyperbolic conformal surface are distance-decreasing in the Poincaré metric on $M$ and the Cayley-Klein metric on the ball ${\mathbb B}^n$, and the extremal maps are precisely the conformal embeddings of the disc ${\mathbb D}$ onto affine discs in ${\mathbb B}^n$. Motivated by these results, we introduce an intrinsic pseudometric on any Riemannian manifold of dimension at least three by using conformal minimal discs, and we lay foundations of the corresponding hyperbolicity theory.

Language:English
Keywords:harmonic maps, minimal surfaces, Schwarz–Pick lemma, Cayley–Klein metric
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Publication date:01.01.2024
Year:2024
Number of pages:Str. 981-1003
Numbering:Vol. 17, no. 3
PID:20.500.12556/RUL-155980 This link opens in a new window
UDC:517.5
ISSN on article:2157-5045
DOI:10.2140/apde.2024.17.981 This link opens in a new window
COBISS.SI-ID:193933059 This link opens in a new window
Publication date in RUL:25.04.2024
Views:410
Downloads:20
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Analysis & PDE
Shortened title:Anal. PDE
Publisher:Mathematical Sciences Publishers
ISSN:2157-5045
COBISS.SI-ID:16644953 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:harmonične preslikave, minimalne ploskve, Schwarz-Pickov lema, Cayley-Kleinova metrika

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P1-0291
Name:Analiza in geometrija

Funder:ARRS - Slovenian Research Agency
Project number:J1-9104
Name:Analiza, geometrija in parcialne diferencialne enačbe

Funder:ARRS - Slovenian Research Agency
Project number:J1-3005
Name:Kompleksna in geometrijska analiza

Funder:ARRS - Slovenian Research Agency
Project number:N1-0237
Name:Holomorfne parcialne diferencialne relacije

Funder:Other - Other funder or multiple funders
Funding programme:Research fund of University of Montenegro

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back