Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Schwarz-Pick lemma for harmonic maps which are conformal at a point
ID
Forstnerič, Franc
(
Author
),
ID
Kalaj, David
(
Author
)
PDF - Presentation file,
Download
(676,48 KB)
MD5: B12A5683B0E37329161A2C2205796E49
URL - Source URL, Visit
https://msp.org/apde/2024/17-3/p04.xhtml
Image galllery
Abstract
We obtain a sharp estimate on the norm of the differential of a harmonic map from the unit disc ${\mathbb D}$ in ${\mathbb C}$ into the unit ball ${\mathbb B}^n$ in ${\mathbb R}^n$, $n\ge 2$, at any point where the map is conformal. In dimension $n=2$, this generalizes the classical Schwarz-Pick lemma, and for $n\ge 3$ it gives the optimal Schwarz-Pick lemma for conformal minimal discs ${\mathbb D}\to {\mathbb B}^n$. This implies that conformal harmonic immersions $M \to {\mathbb B}^n$ from any hyperbolic conformal surface are distance-decreasing in the Poincaré metric on $M$ and the Cayley-Klein metric on the ball ${\mathbb B}^n$, and the extremal maps are precisely the conformal embeddings of the disc ${\mathbb D}$ onto affine discs in ${\mathbb B}^n$. Motivated by these results, we introduce an intrinsic pseudometric on any Riemannian manifold of dimension at least three by using conformal minimal discs, and we lay foundations of the corresponding hyperbolicity theory.
Language:
English
Keywords:
harmonic maps
,
minimal surfaces
,
Schwarz–Pick lemma
,
Cayley–Klein metric
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Publication date:
01.01.2024
Year:
2024
Number of pages:
Str. 981-1003
Numbering:
Vol. 17, no. 3
PID:
20.500.12556/RUL-155980
UDC:
517.5
ISSN on article:
2157-5045
DOI:
10.2140/apde.2024.17.981
COBISS.SI-ID:
193933059
Publication date in RUL:
25.04.2024
Views:
410
Downloads:
20
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Analysis & PDE
Shortened title:
Anal. PDE
Publisher:
Mathematical Sciences Publishers
ISSN:
2157-5045
COBISS.SI-ID:
16644953
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Secondary language
Language:
Slovenian
Keywords:
harmonične preslikave
,
minimalne ploskve
,
Schwarz-Pickov lema
,
Cayley-Kleinova metrika
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0291
Name:
Analiza in geometrija
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-9104
Name:
Analiza, geometrija in parcialne diferencialne enačbe
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-3005
Name:
Kompleksna in geometrijska analiza
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0237
Name:
Holomorfne parcialne diferencialne relacije
Funder:
Other - Other funder or multiple funders
Funding programme:
Research fund of University of Montenegro
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back