izpis_h1_title_alt

Samodejna lokalizacija točk za artroplastiko kolena na rentgenskih posnetkih
ID KOVIČ, JAN (Author), ID Špiclin, Žiga (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,04 MB)
MD5: 8387391E9839ED395C44CC4D11B1CEF1

Abstract
Artroplastika kolena je danes najbolj razširjena metoda zdravljenja končnih stadijev obrabe kolena. Z namenom izboljšanja operativnega zdravljenja so se v zadnjih desetih letih pojavili novi pristopi k postavitvi tako femoralne kot tibialne komponente kolenske endoproteze. Novi pristopi temeljijo na predpostavki, da naj bi kinematično postavljena proteza bolje sledila normalnemu gibanju kolenskega sklepa. Pri izvedbi kolenske artroplastike postaja zato vedno bolj pomembna natančnost postavitve proteze. Trenutno arbitrarno določena dopustna meja odstopanja natančnosti postavitve od načrtovane za posamezni kot je $\pm$3$^{\circ}$. Predoperativne meritve kotov se standardno napravijo na dolgo-osnih rentgenskih posnetkih, ki predstavljajo čelno 2D projekcijo spodnjega uda. To delo preučuje natančnost samodejnih meritev na dolgo-osnih rentgenskih posnetkih spodnje okončine z uporabo YOLO modela v primerjavi z ročnimi (referenčnimi) meritvami dveh ekspertov s področja radiologije in ortopedije. Sprejemljivo odstopanje samodejnih meritev na rentgenskih posnetkih je bilo empirično določeno kot $\pm$3 mm ali $\pm$3$^{\circ}$ glede na referenčne meritve. Eksperimenti so sistematično vrednotili predlagano avtomatsko metodo lokalizacije oslonilnih točk z raziskavo vpliva (i) nastavitve hiperparametrov, (ii) različnih velikosti modelov, (iii) velikosti vhodnih slik in (iv) metod naknadne obdelave kot sta metoda glavnih komponent in Cannyjev detektor robov. Rezultati eksperimentov so pokazali, da je uporaba YOLO modela z 11,6 milijoni parametrov z oznako $"$small$"$, ki je uporabljal učenje s prenosom uteži in metodo optimizacije naključnega gradientnega spusta, uporabo bogatenja s togimi geometrijskimi preslikavami, velikostjo vhodne slike 1920$\times$480 in tehnike naknadne obdelave (metoda glavnih komponent in Cannyjev detektor robov) dal najboljše rezultate. Zbrana je bila zbirka podatkov 188 dolgo-osnih rentgenskih posnetkov 107 bolnikov. Dva eksperta sta ročno anotirala lokacije anatomskih oslonilnih točk na teh posnetkih. Povprečno odstopanje med referenčnimi anotacijami dveh ekspertov je bilo 1,99 mm na X osi in 1,22 mm na Y osi rentgenskih posnetkov. Pri uporabi modela YOLO je bilo povprečno odstopanje od referenčnega nabora podatkov 2,44 mm na X osi in 2,63 mm na Y osi, evklidsko razdaljo 3,98 mm, povprečno absolutno odstopanje napovedanega HKA kota od referenčnega HKA kota je bilo 0,57$^{\circ}$ in uspešnost metode na 97,29\% testne podatkovne zbirke (37/38 slik), kar ustreza vnaprej začrtanim merilom sprejemljive zmogljivosti metode. Avtomatska lokalizacija anatomskih oslonilnih točk na dolgo-osnih rentgenskih posnetkih z uporabo YOLO modela z naknadno obdelavo doseže zadostno natančnost v primerjavi z ročnimi anotacijami ekspertov. Predvidevamo, da bi z nadaljnjim prilagajanjem parametrov, večjimi modeli, ki imajo več parametrov, boljšo naknadno obdelavo in večjimi podatkovnimi zbirkami bi lahko natančnost meritev še izboljšali.

Language:Slovenian
Keywords:Samodejna lokalizacija anatomskih oslonilnih točk, globoko učenje, učenje s prenosom, rentgenski posnetki spodnje okončine, naknadna obdelava, YOLO model.
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-155830 This link opens in a new window
COBISS.SI-ID:193773315 This link opens in a new window
Publication date in RUL:22.04.2024
Views:498
Downloads:72
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automatic localization of points for knee arthroplasty on X-ray images
Abstract:
Knee arthroplasty is now the most common method of treating the end stages of knee wear. In order to improve operative treatment, new approaches to the placement of both femoral and tibial components of knee arthroplasty have emerged in the last ten years. These new approaches are based on the premise that a kinematically placed prosthesis should better follow the normal motion of the knee joint. Therefore, the accuracy of prosthesis placement is becoming more and more important when performing knee arthroplasty. Currently, the arbitrarily defined tolerance limit for the deviation of the placement precision from the plan precision for a given angle is $\pm$3$^{\circ}$. Pre-operative angle measurements are routinely taken on long-axis X-rays, which represent a frontal 2D projection of the lower limb. This thesis investigates the accuracy of automated measurements on long-axis X-rays of the lower limb using the YOLO model compared to manual (reference) measurements by two experts in radiology and orthopedics. The acceptable deviation of the automated X-ray measurements was empirically determined to be $\pm$3 mm or $\pm$3$^{\circ}$ relative to the reference measurements. The experiments systematically evaluated the proposed automatic method for the localization of the landmark by investigating the impact of (i) hyperparameter tuning, (ii) different model sizes, (iii) input image sizes and (iv) post-processing methods such as the principal component analysis and the Canny edge detector, for final landmark location refinement. The experimental results showed that the use of a YOLO model with 11,6 million parameters, labelled $"$small$"$, using weight transfer learning and the random gradient descent optimization method, the use of enrichment with rigid geometric mappings, an input image size of 1920$\times$480, and post-processing techniques (principal component method and Canny edge detector) gave the best results. A dataset of 188 long-axis X-rays of 107 patients was collected. Two experts manually annotated the locations of the anatomical landmarks on these images. The average deviation between the reference annotations of the two experts was 1,99 mm on the X-axis and 1,22 mm on the Y-axis of the X-rays. When using the YOLO model, the average deviation from the reference dataset was 2,44 mm on the X-axis and 2,63 mm on the Y-axis, an euclidean distance of 3.98 mm, an average absolute deviation of the predicted HKA angle from the reference HKA angle of 0.57$^{\circ}$, and method's success rate of 97.29\% on the test dataset (37/38 images), which meets the predefined criteria for acceptable performance level. Automatic localization of anatomical landmarks on long-axis X-rays using the YOLO model with postprocessing achieves sufficient accuracy compared to manual annotations by experts. We anticipate that with further parameter tuning, larger models with more parameters, better post-processing and larger datasets, the accuracy of the measurements could be further improved.

Keywords:Automatic anatomical landmark localization, deep learning, transfer learning, lower limb x-ray images, post-processing, YOLO model.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back