Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Improving the simulations of the hydrological model in the karst catchment by integrating the conceptual model with machine learning models
ID
Sezen, Cenk
(
Avtor
),
ID
Šraj, Mojca
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(21,06 MB)
MD5: AADDA16BA537BB18A7628D2EEF1AB3F0
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0048969724018266
Galerija slik
Izvleček
Hydrological modelling can be complex in nonhomogeneous catchments with diverse geological, climatic, and topographic conditions. In this study, an integrated conceptual model including the snow module with machine learning modelling approaches was implemented for daily rainfall-runoff modelling in mostly karst Ljubljanica catchment, Slovenia, which has heterogeneous characteristics and is potentially exposed to extreme events that make the modelling process more challenging and crucial. In this regard, the conceptual model CemaNeige Génie Rural à 6 paramètres Journalier (CemaNeige GR6J) was combined with machine learning models, namely wavelet-based support vector regression (WSVR) and wavelet-based multivariate adaptive regression spline (WMARS) to enhance modelling performance. In this study, the performance of the models was comprehensively investigated, considering their ability to forecast daily extreme runoff. Although CemaNeige GR6J yielded a v ery good performance, it overestimated low flows. The WSVR and WMARS models yielded poorer performance than the conceptual and hybrid models. The hybrid model approach improved the performance of the machine learning models and the conceptual model by revealing the linkage between variables and runoff in the conceptual model, which provided more accurate results for extreme flows. Accordingly, the hybrid models improved the forecasting performance of the maximum flows up to 40 % and 61 %, and minimum flows up to 73 % and 72 % compared to the CemaNeige GR6J and stand-alone machine learning models. In this regard, the hybrid model approach can enhance the daily rainfall-runoff modelling performance in nonhomogeneous and karst catchments where the hydrological process can be more complicated.
Jezik:
Angleški jezik
Ključne besede:
conceptual model
,
hybrid modelling
,
machine learning
,
karst catchment
,
Ljubljanica River
,
snow
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FGG - Fakulteta za gradbeništvo in geodezijo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
24 str.
Številčenje:
Vol. 926, art. 171684
PID:
20.500.12556/RUL-155773
UDK:
556.165
ISSN pri članku:
0048-9697
DOI:
10.1016/j.scitotenv.2024.171684
COBISS.SI-ID:
190216195
Datum objave v RUL:
17.04.2024
Število ogledov:
468
Število prenosov:
87
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Science of the total environment
Skrajšan naslov:
Sci. total environ.
Založnik:
Elsevier
ISSN:
0048-9697
COBISS.SI-ID:
26369024
Licence
Licenca:
CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:
Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
konceptualni model
,
hibridno modeliranje
,
strojno učenje
,
kraško porečje
,
reka Ljubljanica
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P2-0180
Naslov:
Vodarstvo in geotehnika: orodja in metode za analize in simulacije procesov ter razvoj tehnologij
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
V2-2137
Naslov:
Razvoj metodologije za izračun visokovodnih valov na podlagi ekstremnih padavinskih dogodkov
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Slovenian national committee of the IHP UNESCO research programme
Številka projekta:
UNESCO IHP C3330-20-456010
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
UNESCO Chair on Water-related Disaster Risk Reduction
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj