izpis_h1_title_alt

The Calabi-Yau problem for minimal surfaces with Cantor ends
ID Forstnerič, Franc (Author)

.pdfPDF - Presentation file, Download (512,16 KB)
MD5: 9E3CBB53260C840FD38196717AD2F5F4
URLURL - Source URL, Visit https://ems.press/journals/rmi/articles/6866102 This link opens in a new window

Abstract
We show that every connected compact or bordered Riemann surface contains a Cantor set whose complement admits a complete conformal minimal immersion in ${\mathbb R}^3$ with bounded image. The analogous result holds for holomorphic immersions into any complex manifold of dimension at least ▫$2$▫, for holomorphic null immersions into ${\mathbb C}^n$ with $n \ge 3$, for holomorphic Legendrian immersions into an arbitrary complex contact manifold, and for superminimal immersions into any selfdual or anti-self-dual Einstein four-manifold.

Language:English
Keywords:minimal surfaces, Calabi–Yau problem, null curve, Legendrian curve
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Publication date:01.01.2023
Year:2023
Number of pages:Str. 2067-2077
Numbering:Vol. 39, no. 6
PID:20.500.12556/RUL-155603 This link opens in a new window
UDC:517.5
ISSN on article:0213-2230
DOI:10.4171/RMI/1365 This link opens in a new window
COBISS.SI-ID:176903939 This link opens in a new window
Publication date in RUL:08.04.2024
Views:375
Downloads:23
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Revista matemática iberoamericana
Shortened title:Rev. mat. iberoam.
Publisher:Consejo Superior de Investigaciones Científicas, Real Sociedad Matemática Española, Antonio Córdoba
ISSN:0213-2230
COBISS.SI-ID:26288128 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:minimalne ploskve, problem Calabi–Yau, ničelna krivulja, Legendrove krivulje

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P1-0291
Name:Analiza in geometrija

Funder:ARRS - Slovenian Research Agency
Project number:J1-3005
Name:Kompleksna in geometrijska analiza

Funder:ARRS - Slovenian Research Agency
Project number:N1-0237
Name:Holomorfne parcialne diferencialne relacije

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back