Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
The Sierpiński product of graphs
ID
Kovič, Jurij
(
Author
),
ID
Pisanski, Tomaž
(
Author
),
ID
Zemljič, Sara Sabrina
(
Author
),
ID
Žitnik, Arjana
(
Author
)
PDF - Presentation file,
Download
(470,72 KB)
MD5: B54285CBC353BE50D2A89C1D1568700C
URL - Source URL, Visit
https://amc-journal.eu/index.php/amc/article/view/1970/1763
Image galllery
Abstract
In this paper we introduce a product-like operation that generalizes the construction of the generalized Sierpiński graphs. Let $G, \, H$ be graphs and let $f: V(G) \to V(H)$ be a function. Then the Sierpiński product of graphs $G$ and $H$ with respect to $f$, denoted by $G\otimes_f H$, is defined as the graph on the vertex set $V(G) \times V(H)$, consisting of $|V(G)|$ copies of $H$; for every edge $\{g, g'\}$ of $G$ there is an edge between copies $gH$ and $g'H$ of form $\{(g, f(g'), (g', f(g))\}$. Some basic properties of the Sierpiński product are presented. In particular, we show that the graph $G\otimes_f H$ is connected if and only if both graphs $G$ and $H$ are connected and we present some conditions that $G, \, H$ must fulfill for $G\otimes_f H$ to be planar. As for symmetry properties, we show which automorphisms of $G$ and $H$ extend to automorphisms of $G\otimes_f H$. In several cases we can also describe the whole automorphism group of the graph $G\otimes_f H$. Finally, we show how to extend the Sierpiński product to multiple factors in a natural way. By applying this operation $n$ times to the same graph we obtain an alternative approach to the well-known $n$-th generalized Sierpiński graph.
Language:
English
Keywords:
Sierpiński graphs
,
graph products
,
connectivity
,
planarity
,
symmetry
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Publication date:
01.01.2023
Year:
2023
Number of pages:
art. P1.01 (25 str.)
Numbering:
Vol. 23, no. 1
PID:
20.500.12556/RUL-155088
UDC:
519.17
ISSN on article:
1855-3966
DOI:
10.26493/1855-3974.1970.29e
COBISS.SI-ID:
143319043
Publication date in RUL:
19.03.2024
Views:
630
Downloads:
273
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Ars mathematica contemporanea
Publisher:
Društvo matematikov, fizikov in astronomov, Društvo matematikov, fizikov in astronomov, Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije
ISSN:
1855-3966
COBISS.SI-ID:
239049984
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Secondary language
Language:
Slovenian
Keywords:
grafi Sierpińskega
,
produkti grafov
,
povezanost
,
ravninskost
,
simetrija
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0294
Name:
Računsko intenzivne metode v teoretičnem računalništvu, diskretni matematiki, kombinatorični optimizaciji ter numerični analizi in algebri z uporabo v naravoslovju in družboslovju
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-9187
Name:
Akcijski grafi in tehnike krovnih grafov
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-7051
Name:
Neodvisnost in dominacija v strukturiranih grafovskih razredih
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-7110
Name:
RAZISKOVANJE NOTRANJE STRUKTURE STOLPNIH GRAFOV
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-1691
Name:
Weissova domneva in posplošitve
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0032
Name:
Grafi, grupe, konfiguracije in geometrije
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back